

Estimating Optimal Capital Requirements for Banks

William R. Cline

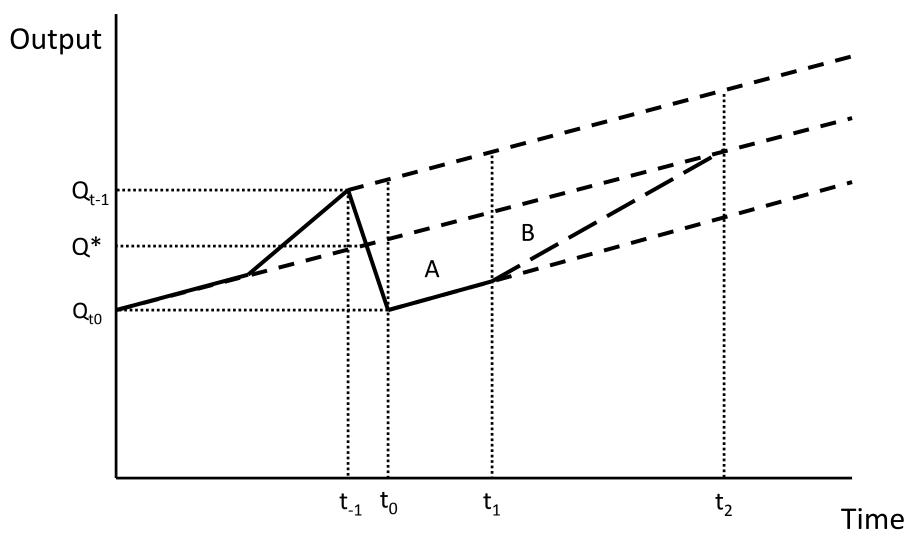
Senior Fellow

Peterson Institute for International Economics

Modigliani-Miller Equity Cost as Function of Debt/Equity Leverage

$$i_j = \rho + (\rho - r) \frac{D_j}{S_j}$$

- i_j = unit cost of equity
- ρ = sectoral capitalization rate
- r = interest rate
- $D_j = \text{debt}$
- S_j = shareholder equity


M&M Test for 51 Large US Banks 2001-13

Earnings yield: Adj. $R^2 = 0.088$ ey_t = 6.63 + 0.0513 R_{t-1} -1.89 D₀₈₁₀; (19.5) (1.62) (-7.2) R: debt/equity D: dummy

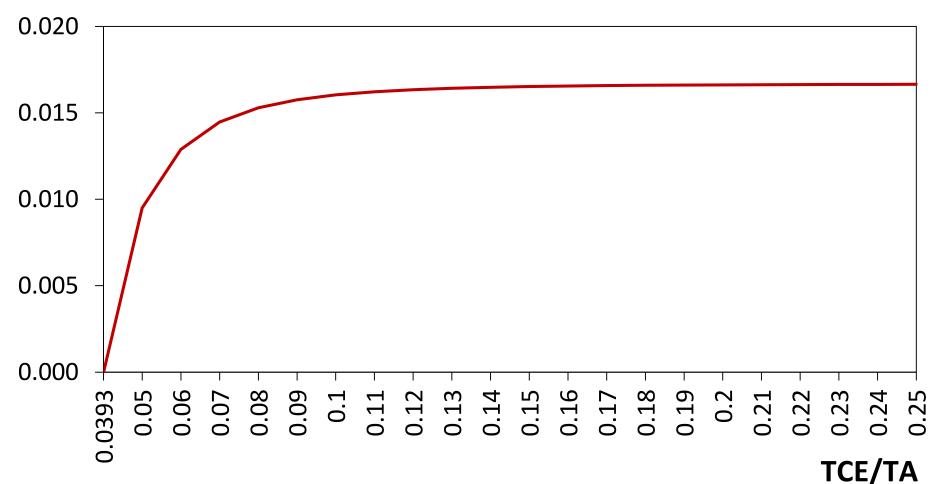
Net income/ Book equity Adj. $R^2 = 0.268$ NI_t/E_{t-1} = 7.206 + 0.636 R_{t-1} -5.823 D₀₈₁₀; (10.0) (9.4) (-10.5)

Losses from a Banking Crisis

Deriving the benefits curve

- Baseline damage: $D_0 = P_{cr0}\lambda_0$
- Crisis probability: $P_{crk} = Ak^{\gamma}$, $\gamma < 0$
- Benefit: $B = -(P_{crk} P_{cr0})\lambda_0$ = $-A\lambda_0(k^{\gamma} - k_0^{\gamma})$

Marginal benefit: $\frac{dB}{dk} = -A\lambda_0\gamma k^{\gamma-1}$


BCBS Schedule of Crisis Probability For Alternative Capital Ratios

TCE/RWA	TCE/TA	P _{cr}
6	3.4	7.2
7	3.9	4.6
8	4.5	3
9	5.1	1.9
10	5.6	1.4
11	6.2	1
12	6.7	0.7
13	7.3	0.5
14	7.9	0.4
15	8.4	0.3

Benefits of higher capital ratios

Fraction of GDP

Impact on cost of capital to the economy

Banks: $z = z_0 + (k - k_0)(\rho_B - r_d)(1 - \mu)$

Non-banks: $r_{NB,0} + \theta \times (z - z_0)$

Economy: $w = \phi_B(z + S_f) + \phi_{NB}r_{NB} + \phi_f \rho_f$ Proportional change $v = \left(\frac{w_k}{w_0} - 1\right)$

Cost of higher capital cost to economy

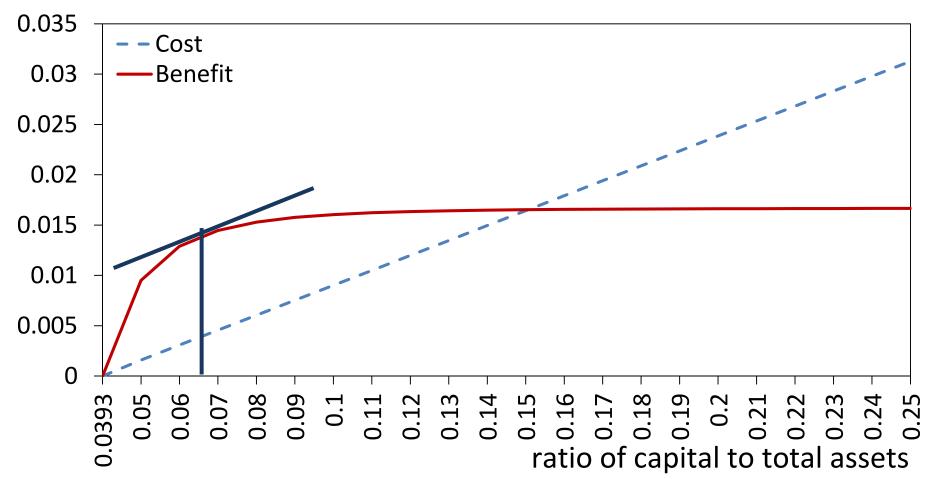
$$C = \frac{v \times \alpha \times \sigma}{(1 - \alpha)}$$

 α = output elasticity with respect to capital

 σ = elasticity of substitution, capital & labor If α =0.33, σ = 0.5, w₀= 0.1, Δw = 0.01, and *v*=0.1, then:

C = 0.025

Marginal cost to economy from higher k is constant

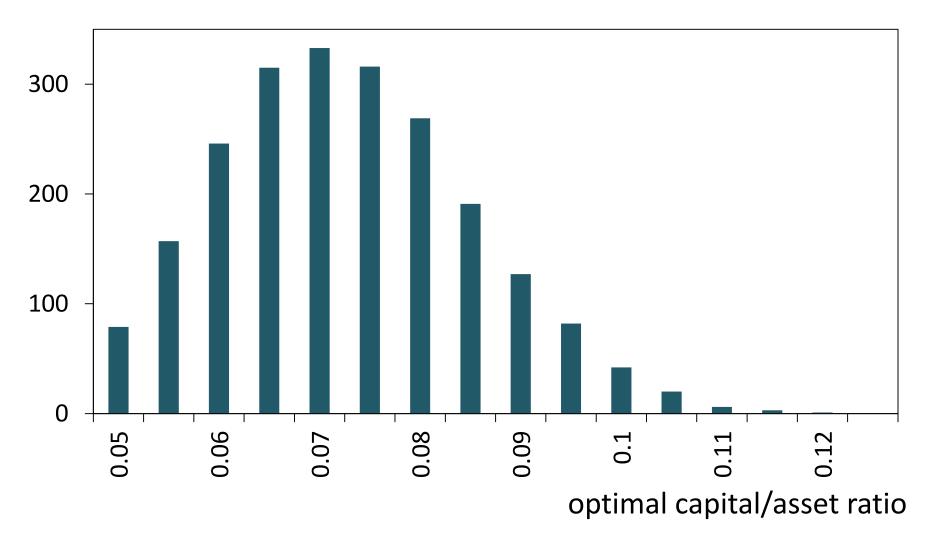

$$\frac{dC}{dk} = \frac{dC}{dv} \times \frac{dv}{dw} \times \frac{d_w}{d_z} \times \frac{d_z}{d_k}$$

$$=\frac{\alpha\sigma}{1-\alpha}\frac{1}{w_0}(\phi_B+\theta\phi_{NB})\{(\rho_B-r_d)(1-\mu)\}$$

 $\equiv \psi$

Benefits and costs of additional bank capital

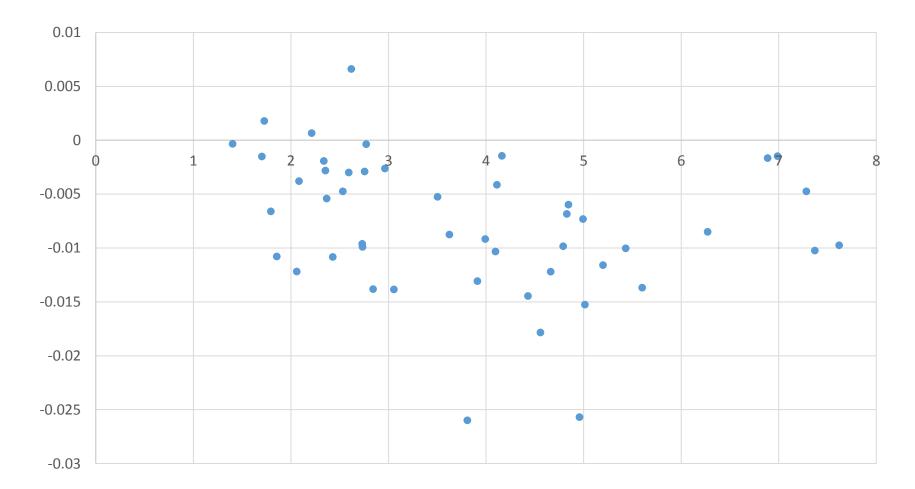
fraction of GDP



Simulation parameters

Parameter	Concept	Low OCR	Base	High OCR
λ	Loss from crisis	0.3	0.64	1.0
ρв	Equity cost to banks	0.13	0.10	0.07
μ	M&M offset	0.35	0.45	0.60
θ	Nonbank spillover	0.7	0.5	0.2
α	Capital elasticity	0.43	0.40	0.33
σ	Substitution elast.	0.8	0.5	0.4

Frequency, optimal capital ratio



Optimal Capital Requirements (tce/rwa %)

STUDY	K/RWA	STUDY	K/RWA
Admati-Hellwig	36-53	Yan et al	10
Hanson et al	27	Kragh-Sørensen	16-23
Dagher et al	9-17	De-Ramon et al	10
Basel Cttee	13	Van den Heuvel	<5
Barrell et al	9	Clerc et al	11
Miles et al	16-20	Mendicino et al	10
Kato et al	11-14	Cline	12-14
Gambacorta	12	MEDIAN	13

Great Recession change, net income/assets, and log asset size, 50 large US banks

