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Abstract

Tracking human activity in real time and at fine spatial scale is partic-
ularly valuable during episodes such as the COVID-19 pandemic. In this
paper, we discuss the suitability of smartphone data for quantifying move-
ment and social contact. We show that these data cover broad sections of the
US population and exhibit movement patterns similar to conventional survey
data. We develop and make publicly available a location exposure index that
summarizes county-to-county movements and a device exposure index that
quantifies social contact within venues. We use these indices to document how
pandemic-induced reductions in activity vary across people and places.
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1 Introduction

Personal digital devices now generate streams of data that describe human behav-

ior in great detail. The temporal frequency, geographic precision, and novel content

of the “digital exhaust” generated by users of online platforms and digital devices

offer social scientists opportunities to investigate new dimensions of economic

activity. The COVID-19 pandemic has demonstrated the potential for real-time,

high-frequency data to inform economic analysis and policymaking when tradi-

tional data sources deliver statistics less frequently and with some delay.

In this paper, we discuss the suitability of smartphone data for quantifying

movement and social contact. We show that these data cover a significant fraction of

the US population and are broadly representative of the general population in terms

of residential characteristics and movement patterns. We use these data to produce

a location exposure index (“LEX”) that describes county-to-county movements

and a device exposure index (“DEX”) that quantifies the exposure of devices to

each other within venues. These indices reveal substantial declines in inter-county

travel and social contact in venues in March and April 2020. Compared to pre-

pandemic levels, long-distance travel and the social contact of devices residing in

more college-educated neighborhoods declined relatively more.

We publish these indices each weekday in a public repository available to all

non-commercial users for research purposes.1 Our aim is to reduce entry costs for

those using smartphone movement data for pandemic-related research. By creating

publicly available indices defined by documented sample-selection criteria, we

hope to ease the comparison and interpretation of results across studies.2 More

broadly, this paper provides guidance on potential benefits and relevant caveats

when using smartphone movement data for economic research.
1The indices and related documentation can be downloaded from https://github.com/

COVIDExposureIndices.
2Examples of research using our indices thus far include Gupta, Nguyen, Rojas, Raman, Lee,

Bento, Simon, and Wing (2020), Monte (2020), Yilmazkuday (2020b), and Yilmazkuday (2020a).
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Researchers in economics and other fields are turning to smartphone movement

data to investigate a great variety of social-science questions. Chen and Pope (2020)

use similar smartphone data covering almost 2 million users in 2016 to document

cross-sectional variation in geographic movement across cities and income groups.

We focus on the distinctive advantages of these data’s frequency and immediacy.

A growing body of both theoretical and empirical research investigates human

movement, social contact, and economic activity in the context of the COVID-19

pandemic.3 Our indices provide empirical measures of these phenomena, com-

plementing private-sector real-time measures of social distancing and movement.4

We describe properties of smartphone data, compare the residential distribution

and movement patterns of devices to those in traditional data sources, produce

publicly available indices that can be used to easily compare results across stud-

ies, and investigate potential measurement issues that arise in the context of the

ongoing pandemic.

2 Data

Our smartphone movement data come from PlaceIQ, a location data and analytics

firm. In this section, we describe how PlaceIQ processes devices’ movements to

define visits to venues, and how we select the devices, venues, and visits included

when we compute our exposure indices. We then compare these devices and their

movements to residential populations and movements reported in traditional data

sources.
3Among many others, see Greenstone and Nigam (2020) on the value of social distancing, Mal-

oney and Taskin (2020) on private social distancing, Brzezinski, Deiana, Kecht, and Van Dijcke
(2020) on the effect of government-ordered lockdowns, Engle, Stromme, and Zhou (2020) on corre-
lates of observed social distancing, Farboodi, Jarosch, and Shimer (2020) on optimal policy, Monte
(2020) on mobility zones, and Xiao (2020) on the value of contact-tracing apps.

4For example, Unacast reports distance traveled; Google’s community mobility reports capture
visits to different venue types; and SafeGraph reports time spent at and away from home. Relative
to these measures, our indices are designed to summarize travel and overlapping visits relevant for
COVID-19 circumstances in an IRB-approved public release.
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2.1 Device Visit Data

PlaceIQ aggregates GPS location data from different smartphone applications using

each device’s unique advertising identifier. The raw GPS data come as pings

that register whenever the application requests location data from the device.5

These pings are joined with a map of two-dimensional polygons, corresponding

to buildings or outdoor features such as public parks, which we denote “venues.”

A timestamped set of pings within or in the close vicinity of a polygon constitutes

a “visit.”6 Since a device’s location is measured with varying precision, PlaceIQ

assigns each visit an attribution score based on ping characteristics and geographic

features. We retain all visits with an attribution score greater than a minimum

threshold. See Appendix A.1 for details.

2.2 Sample Selection

2.2.1 Devices covered

For the typical smartphone in the PlaceIQ data, we observe about six months of

movements, but there is considerable heterogeneity across devices. Each Android

and iOS smartphone has an identifier that uniquely identifies the device at any

given time, and the device’s unique advertising identifier can be refreshed by the

user and may be refreshed by some system updates. Thus, the average lifespan

of an advertising identifier is less than that of a physical phone. Even devices

observed over a long time period may not ping regularly. Ping frequency reflects

a device’s applications, settings, and movements.

To focus on devices whose (non-)movements can be reliably characterized, we

restrict the set of devices included in the computation of our indices to those that

pinged on at least 11 days over any 14-day period from November 1, 2019 through

5The set of applications is not revealed to us. Some applications collect location data only when
in active use, while others collect location data at regular intervals.

6If a device pings multiple times during a visit, then we have information about visit duration.
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the reporting date. The earliest date for which we report our indices is January 20,

2020, so this criterion selects a set of devices based on a window of at least 80 days

of prior potential activity. Later reporting dates have longer windows. Given the

reduced movement associated with the COVID-19 pandemic, a criterion using a

fixed window of prior potential activity would exclude devices that temporarily

reduced their movements. As of June 4, 2020, 53 million devices met this device

selection criterion. On any given day, about 20 million of these devices ping at least

once.

For a subset of devices, we can assign a residential location with reasonable

confidence, based on the duration of their residential visits since November 1,

2019. Appendix A.2 describes our home assignment algorithm. In short, we

assign home locations based on where devices repeatedly spend time at night. We

use Census-reported demographic characteristics for block groups, which contain

about 600 to 3,000 people, as proxies for device demographics. Since many people

temporarily moved to other residential locations during the pandemic, we assign

a device to a block group of residence based on the block group of its first home

location after November 1, 2019. As of June 4, 2020, 30 million devices have an

assigned block group of residence.

In the context of the COVID-19 pandemic, a potential concern is that devices

may not generate pings when “sheltering in place”, due to their lack of movement.

Indeed, there was a general decline in the number of devices generating pings in

March 2020, presumably due to pandemic-induced declines in movement. When

defining our exposure indices in the next section, we discuss how they are impacted

by devices sheltering in place and suggest potential adjustments.

Even absent a pandemic, the number of devices appearing in the data varies

meaningfully over time. That variation may reflect changes in smartphone own-

ership patterns, smartphone device settings, app usage, PlaceIQ app coverage,

seasonal variation in behavioral patterns, or an Android or iOS operating system

4



update. These are unlikely explanations for the general decline starting in March

2020, as that decline coincides with the COVID-19 outbreak in the United States

and there has not been a major OS update or major shift in PlaceIQ app coverage

since the beginning of 2020. When publishing our indices, we also publish the

number of devices underlying these values so that researchers can assess when

changes in the exposure indices may not reflect true changes in behavior.7

2.2.2 Venues covered

Venues include commercial establishments, public parks, residential locations, and

polygons lacking an identified business category. When assigning devices’ homes,

only residential locations are relevant. When tracking devices’ movements across

geographic units in the LEX, visits to all such venues are informative.

When measuring potential social contact by the DEX defined in Section 3, we

restrict attention to venue categories in which most venues are sufficiently small

that visiting devices would be exposed to each other. In particular, we omit the

categories “Residential”, “Nature and Outdoor", “Theme Parks", “Airports", “Uni-

versities", as well as venues without a category identified by PlaceIQ. Finally, note

that PlaceIQ excludes certain venue categories for privacy reasons, such as hospi-

tals, schools, and places of worship.

The commercial categories included in our DEX calculations account for three-

quarters of a million venues. Since a venue corresponds to a building, certain

types of buildings can belong to multiple categories. For instance, a building with

a coffee shop inside a book store would map to two categories (restaurant and

retail). In most categories, the coverage of chains is high, but we observe a smaller

share of independent businesses.8 For instance, the largest category is restaurants,

7For example, the number of devices drops about 10 percent during April 14-18, 2020. In the
absence of an obvious nationwide shock, this presumably reflects a change in smartphone data
provision rather than a common change in behavior. Such variation will be absorbed by day fixed
effects in difference-in-differences research designs.

8See Appendix C of Couture, Gaubert, Handbury, and Hurst (2020) for details.
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which has about 200,000 distinct venues containing 370,000 restaurants.9 Table A.2

reports the number of venues within each venue category in the DEX. There is little

variation in the number of venues within January to June 2020.

2.2.3 Locations covered

We report our indices for all US states and most US counties. Many US counties

have few residents and therefore few devices in the PlaceIQ data. The indices we

report are restricted to counties with reasonably large device samples. To imple-

ment this restriction, we assign each device to a unique daily “residential county”,

where that device had the highest (cumulative) duration of time at residential lo-

cations on that date. We report our indices only for the 2,018 counties that were the

residential county of at least 1,000 devices on every day from January 6 to 12, 2020.

2.3 Representativeness

Smartphone data cover a significant fraction of the US population. However, dif-

ferences in smartphone ownership and app use, sample selection rules specific to

research applications, and the use of small geographic units may produce unrepre-

sentative samples.10 For example, older adults are less likely to own smartphones,

making smartphone-derived samples unbalanced across age groups.11

In this section, we compare the residential distribution and movement patterns

of devices in our sample to those in traditional data sources. This analysis re-

quires restricting our sample to devices assigned a residential block group, which

9US County Business Patterns reports there were about 570,000 establishments in NAICS 7225
in 2017.

10For instance, SafeGraph, another location data provider, found that about 10 percent of block
groups contain 30 to 40 percent of the devices in their data, leading to “disproportionately and some-
times impossibly high” numbers of devices relative to the Census-reported residential population
(Squire, 2019).

11The Pew Research Center estimates that 81 percent of US adults own a smartphone. That
rate varies from 96 percent for ages 18-29 to only 53 percent for those over 65 years. See https:
//www.pewresearch.org/internet/fact-sheet/mobile/.
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constitute about 80 percent of the devices in our sample.12

Panel A of Figure 1 shows that geographic units with larger residential popula-

tion have more devices in our sample residing in them. Regressing the log number

of devices on the US Census Bureau’s 2019 estimate of log residential population

yields an R2 of 0.96 for states and 0.95 for counties. On average, the number of

devices in our sample is about one-tenth of the total population.

Panel B of Figure 1 investigates the distribution of devices across residential

block groups within each county. The panel shows the share of devices living in

block groups in ten population deciles ranked by income, share white, education,

and population density. For instance, the top-right chart shows that about 10

percent of devices live in each decile of a county’s block group median household

income distribution. Similarly, about 10 percent of devices live in each decile when

we rank block groups within their county by the share of their residents who are

white or college graduates. When looking at deciles ranked by population density,

denser block groups are somewhat underrepresented: only about 7 percent of

devices live in block groups in the highest population-density decile.

In Appendix Figure B.1, we reproduce Panel B of Figure 1 using national pop-

ulation deciles instead of within-county population deciles. In that case, we find

greater overrepresentation of block groups with low population densities and large

shares of white residents.13 Given that our sample is more representative within

counties than across counties, we suggest that researchers focus on applications of

our indices that rely on within-county variation or on intertemporal cross-county

variation in relative changes. Applications relying on cross-county differences in

levels may be prone to sample-selection bias.

12This restricted sample is the same that we will later use to compute our indices broken down
by demographic group.

13When examining SafeGraph data, Squire (2019) reports the opposite pattern: SafeGraph data
have fewer devices in block groups with more white residents. This suggests that representativeness
may vary across smartphone data providers or sample-selection criteria.
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Panel C of Figure 1 examines residential migration. For each state, Panel C

compares the share of devices that moved from another state during the prior

year to the share of new residents in the 2017-2018 Internal Revenue Service (IRS)

Migration Data. To facilitate this comparison, we restrict attention to the 5.4 million

devices in the PlaceIQ data with non-missing home assignments in both the first

and last week of 2019. Using this sample, we compute the share of devices in each

state in the last week of 2019 that were residing in a different state in the first week

of 2019. At the state level, this share of devices and the share of IRS-reported tax

returns are highly correlated: regressing the PlaceIQ share on the IRS share yields

an R2 exceeding 0.8. At the county level, the correlation is considerably weaker,

yielding an R2 of only 0.15. This reflects in part smaller samples at the county level:

if we restrict attention to counties with populations greater than 100,000, the R2

increases to 0.25, and for county populations greater than 200,000 people, the R2

rises further to 0.50.

Panel D of Figure 1 examines travel from home to commercial venues by depict-

ing the distributions of trip lengths in our smartphone data and the 2017 National

Household Transportation Survey (NHTS). For the PlaceIQ data, we show trips to

venues included in the DEX computation.14 For the NHTS, we show trips within

the trip-purpose categories that most closely match DEX venues.15 The figure de-

picts two trip-length distributions for each data source, one for people or devices

living in block groups within the top quartile of the population density distribution,

and one for people or devices living in the bottom quartile. The smartphone and

NHTS trip-length distributions are remarkably similar, and both show a greater

propensity to make shorter trips in more densely populated areas.

Overall, the patterns documented in Figure 1 suggest the potential of broadly

14A trip is from home if the device’s previous visit was its home within the previous hour. We
estimate driving distance (trip length) as 1.5 times the straight-line distance between the home and
venue.

15These NHTS categories are "buy goods", "buy services", "buy meals", "other general errands",
"recreational activities", and "exercise".
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representative smartphone data for use in economic research. That said, we encour-

age researchers using these data to evaluate the precision and representativeness of

their sample in their particular context. To help researchers assess whether our in-

dices are suitably precise for their research application, we publish the underlying

number of devices for each index, day, and geographic unit.

3 Exposure Indices

In this section, we describe how we compute the location exposure index, which

measures state-to-state or county-to-county movement, and the device exposure

index, which measures state- or county-level average exposure of devices to each

other within commercial venues.

3.1 Notation and Preliminaries

We use the following notation when defining the LEX and DEX. Let i index devices,

j index venues, g index geographic units (counties or states), and t and d index

dates. Let pi jt ∈ {0, 1} and pigt ∈ {0, 1} be equal one if device i pinged in venue j

or geography g, respectively, on date t. Define pit ≡ maxg pigt as an indicator that

equals one if device i pinged in any geographic unit on date t. Let rigt ∈ {0, 1} be

equal one when device i resided in g at date t, where we assign residence based on

the geographic unit in which the device spent the most time in residential venues

on that date.16

Next, we define sets of devices and venues based on these indicators. Let

I j,d ≡
{
i : pi jd = 1

}
and Ig,d ≡

{
i : pigd = 1

}
denote the sets of devices that pinged in

venue j or geographic unit g, respectively, on date d. Let Gg,d ≡
{
i : rigd = 1

}
denote

the set of devices that reside in geographic unit g on date d. Let Ji,d ≡
{
j : pi jd = 1

}
denote the set of venues where device i pinged on date d.

16In the event of a tie, the geographic unit of residence is assigned based on visits to non-residential
locations.
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3.2 Location Exposure Index (LEX)

The LEX is a matrix that answers the following query: Among smartphones that

pinged in geographic unit g′ on date d, what share of those devices pinged in

geographic unit g at least once during the previous 14 days? We report the LEX as

a daily G×G matrix, in which each cell reports, among devices that pinged on day

d in the column location g′, the share of devices that pinged in the row location g at

least once during the previous 14 days (conditional on pinging anywhere during

the previous 14 days). Thus, each element of this matrix is

LEXgg′d ≡

∑
i∈Ig′ ,d

1
{∑d−1

t=d−14 pigt > 0
}

∑
i∈Ig′ ,d

1
{∑d−1

t=d−14 pit > 0
} =

∑
i 1

{
i :

(
pig′d = 1 &

∑d−1
t=d−14 pigt > 0

)}
∑

i 1
{
i :

(
pig′d = 1 &

∑d−1
t=d−14 pit > 0

)} .
As an example, if g′ is New York County, NY and g is Suffolk County, NY, then

LEXgg′d is the share of devices pinging in Suffolk County on day d that also pinged

in New York County over the last 14 days (conditional on pinging anywhere in the

US in the last 14 days).

We define the LEX to summarize people’s movements with pandemic-related

applications in mind. The index describes the share of people in a given location

who have been in other locations during the prior two weeks. Thus, if COVID-19

cases surge in county g, LEXgg′d describes the potential exposure of county g′ to

the infectious disease via prior human movement from county g to g′. We chose

the 14-day period of exposure based on the incubation period commonly cited

by public-health authorities during the ongoing pandemic.17 We chose to focus

on all devices pinging in a given location rather than only residents because all

human movement is relevant for potential disease exposure. Similarly, LEXd is

not a transition matrix and its columns do not sum to one because a device can
17The CDC’s COVID-19 FAQ page: “Based on existing literature, the incubation period (the

time from exposure to development of symptoms) of SARS-CoV-2 and other coronaviruses (e.g.
MERS-CoV, SARS-CoV) ranges from 2–14 days.”
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visit multiple location during the 14-day period. The temporal frequency and

geographic units were selected to protect device user privacy in the context of

a public data release. For other research applications, the appropriate length of

exposure or geographic units may vary.

Starting in March 2020, there was a general decline in the number of devices

generating pings, presumably due to individuals restricting their movements in

response to the pandemic. Both the numerator and denominator of LEXgg′d restrict

attention to devices that ping in g′ on day d (i ∈ Ig′,d), so the LEX captures the

locational histories of devices that are “out and about” in geographic unit g′ on

date d and does not capture the locational histories of devices sheltering-in-place

and not generating any pings. This seems the relevant notion of potential exposure

in the context of the ongoing pandemic: the index captures non-local exposure

associated with “active” devices that are moving around within location g′. For

applications that require measuring exposure for the entire population of devices,

including those that do not generate pings, we have published the daily number of

devices that ping in each county, so that researchers can adjust their computations.

3.3 Device Exposure Index (DEX)

The DEX is a county- or state-level scalar that answers the following query: How

many distinct devices does the average device living in g encounter via overlapping

visits to commercial venues on each day? To compute the DEX, we first calculate

the daily exposure set of device i as the number of distinct other devices that visit

any commercial venue that i visits on date t:

EXPi,d =
⋃
j∈Ji,d

I j,d.

12



The DEX is then defined as the average size of the exposure set for devices that

reside in geographic unit g on date d:

DEXg,d ≡
1
|Gg,d|

∑
i∈Gg,d

|EXPi,d|.

Note that the DEX values are necessarily only a fraction of the number of distinct

individuals that also visited any of the commercial venues visited by a device, since

only a fraction of individuals, venues, and visits are in the device sample.

We have defined the DEX to summarize social contact with pandemic-related

applications in mind. The index captures overlapping visits to venues on the same

day, which is relevant for potential virus exposure. We chose to define overlapping

visits as visits to a venue on the same day rather than during the same hour based

on both sample size and the concern that SARS-CoV-2 can persist in circulating air

and on surfaces for multiple hours. The geographic units were selected to protect

user privacy in the context of a public data release.

Note that devices sheltering in place would drop out of the sample used to com-

pute the DEX if they did not generate any pings. As a result, the DEX may underes-

timate the reduction in exposure following the COVID-19 outbreak. We therefore

implement a simple adjustment of the DEXg,d denominator as one means of ad-

dressing the potential sample selection problem associated with devices sheltering-

in-place. Define a counterfactual set of pinging devices G∗g,d such that any device

in G∗g,d but not in the observed Gg,d is sheltering in place with |EXPi,d| = 0. The

adjusted DEX is

DEXadjusted
g,d =

|Gg,d|

|G∗g,d|
DEXg,d.

We assign the counterfactual set G∗g,d to be the largest number of devices observed

on any day from January 20, 2020 to February 14, 2020 in geographic unit g, so that:

|̂G∗g,d| = max
d∈[20 Jan 2020,14 Feb 2020]

|Gg,d|

13



Given that |Ĝ∗g,d| is an upper bound, DEXadjusted
g,d likely overestimates the drop in

exposure following the COVID-19 outbreak. On the other hand, as noted above,

the unadjusted DEXg,d likely underestimates the drop in exposure.18 Together, these

series should offer useful bounds. As mentioned before, even absent a pandemic

there is meaningful variation in the number of devices in the sample that affect the

DEX.

For devices that have a home assigned, we compute DEX values by the de-

mographic characteristics of their residential block group. We only report these

demographic DEX values at the state level, due to sample size and privacy consid-

erations.

DEX by income Within each state g, we partition all census block groups into

four median income quartiles with an equal number of block groups. We index

these quartiles by q ∈ {1, 2, 3, 4}. Within each state g on each day d, we denote by

Gg,q,d the set of devices i that have a home in a block group within quartile q.19 The

DEX by income is then:

DEX-incomeg,q,d =
∑

i∈Gg,q,d

EXPi,d

|Gg,q,d|

DEX by education The DEX by education is the same as the DEX by income,

except that the four quartiles are based on the college share within each block

18In practice, while the average absolute difference between the state-level unadjusted and ad-
justed DEX values is 7 percent, the two indices have a correlation coefficient of 0.996 in levels and
0.992 in first differences. Figure B.2 shows that the population-weighted median values of the
unadjusted and adjusted DEX track each other closely over time. The adjusted DEX should not be
used when |Gg,d| > |G∗g,d|, which will occur as social contact resumes and devices stop sheltering in
place.

19Note that the residential block group is not necessarily within geographic-unit-of-residence g.
This allows for cases where a device leaves their assigned home to shelter in place somewhere
else. For example, if a device’s home is in a block group in New York corresponding to the bottom
income quartile, and it moves to Pennsylvania to shelter in place, that device is still assigned to the
first income quartile but its state of residence changes to Pennsylvania.
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group.20

DEX by race/ethnicity We report DEX values by racial/ethnic categories available

in the Census of Population. For each r ∈ {Asian,Black,Hispanic,White}, we report

a weighted average of device-level exposure,

DEX-raceg,d,k =
∑

i∈Gg,q,d

wi,rEXPi,d∑
i∈Gg,q,d

wi,r
,

where wi,r is the residential share of race/ethnicity r in device i’s block group.21

4 Tracking activity during the 2020 pandemic

We now use the LEX and the DEX to document pandemic-induced reductions in

activity during 2020 and explore how they vary across people and places.

4.1 Reduced movement between US counties

To illustrate the movement detail captured by the county-to-county LEX, in Figure 2

we plot the fraction of devices that pinged in Manhattan (New York County), one

of the early US epicenters of the pandemic. The maps depict the share of devices

in each US county that had pinged in Manhattan during the previous two weeks

on the last Saturday of February, March, April, and May 2020. The February panel

shows a clear role for physical distance, as counties closer to Manhattan typically

have a larger share of devices that have been in Manhattan during the previous

two weeks, but it also makes clear that physical distance and county-to-county

20The college share is the share of adults 25-65 years old with at least a four-year college degree.
21To be precise, the categories “Asian,” “Black,” “Hispanic,” and “White” are shorthand for

non-Hispanic Asian, non-Hispanic black, all Hispanic, and non-Hispanic white residents. These
four categories are sufficiently large to be reported for many geographic units. In a few states, the
number of recorded devices is low for some of these four racial/ethnic groups. We only report the
DEX-race for a given racial/ethnic group in states where the weighted number of devices for that
group is at least 1,000 devices every day from January 6 to 12, 2020.
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movements are distinct. These measures of county-to-county movement should

be more useful than physical distance in applications describing person-to-person

economic linkages and disease spread.

The LEX reveals a swift decline in travel between New York County and other

counties over the course of March 2020. While Figure 2 suggests a broad decline

in the share of devices that had been in New York County during the previous

two weeks, the decline appears greater in counties farther from New York City.

Movements connected to New York County became more spatially concentrated

by late April. A modest increase in inter-county travel is visible by late May.

Figure B.3 provides a contrasting example, depicting counties’ exposure to

Houston, Texas (Harris County). In that case, although there is a sizable decline in

the shares of devices on the east coast that have recently been in Houston, travel

from Houston to southern and southwestern counties shows little to no decline.

Because the county-to-county LEX matrix reports more than 4 million values for

each day, maps like those in Figure 2 and B.3 offer only a glimpse of the movement

patterns captured by these data.

To summarize daily LEX values for the entire United States, Figure 3 depicts

changes in state-level LEX values by physical proximity. We group pairs of states

based on the distance between them and compute the daily mean value of LEXgg′d

for each group. For example, the shortest-distance group consists of all states g and

g′ such that the distance between the population-weighted centroids of g and g′ are

less than 100 miles apart. The longest-distance group consists of state pairs with

population-weighted centroids more than 1,500 miles apart. To illustrate relative

declines, Figure 3 depicts the mean daily LEX value for each distance-defined group

of state pairs relative to its value on March 1, 2020.
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Figure 3: State-level LEX values by distance between states
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Notes: This figure depicts average LEX values for pairs of states grouped by the distance between
their population-weighted centroids. Each series is normalized relative to its value on March 1,
2020. The TSA throughput series reports the number of travelers passing through TSA checkpoints
on each day.

Although the average LEX value declines for all state pairs through late April,

pairs of states that are farther apart tended to exhibit larger relative declines. By

mid-April, state-level LEX values at all distances were down 40 percent relative to

their earlier levels. For comparison, monthly total vehicle-miles traveled, a measure

that reflects both intrastate and interstate travel, fell by about 40 percent from

February to April.22 The steepest decline observed is for state pairs that include

Alaska or Hawaii where across-state movements depend heavily on air travel.23

This decline, which was down about 90 percent by mid-April, closely tracks the

decline in daily checkpoint totals at US airports reported by the Transportation

Security Administration (TSA) two weeks earlier, as the LEX captures inter-state

movements using a fourteen-day window. Inter-state travel at all distances began

22We computed this figure using monthly seasonally adjusted vehicle-miles-traveled estimates
from the Federal Highway Administration (series TRFVOLUSM227SFWA at https://fred.
stlouisfed.org). Note that total distance traveled and the notion of exposure captured by the
LEX are distinct concepts.

23Alaska and Hawaii are both at least 1,400 miles from every other US state.
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to rise in late April 2020.

4.2 Reduced overlapping visits to venues

Figure 4 maps the county-level DEX on the last Saturday of February, March, April,

and May 2020 relative to its level on Saturday, February 1. Panel A shows a rise in

activity nationwide in late February. The median county saw a 20 percent increase

in the DEX between February 1 and February 29. A similar relative uptick in

activity in February 2019 suggests this increase is likely regular seasonal variation

rather than a pandemic-induced shift. Panel B shows a reduction in activity over

the subsequent four weeks in all but two counties. On March 28, the median

county’s DEX was just 35 percent of its February 1 level.24 Panel C shows that by

late April, activity had increased across much of the country, though even in late

May (Panel D) it remained lower than it was in early February, by more than a

factor of two in the greater New York City area, California, Washington, and the

southern tip of Florida. The counties that saw outsized growth in activity by late

May are often summer vacation destinations, such as Dare County, NC (containing

the Outer Banks) and Bay County, FL (containing Panama City).

Some of this variation might be explained by policy differences. Appendix

Figure B.5 depicts the evolution of the county-level DEX around policy events after

controlling for county and time fixed effects. As in Brzezinski, Deiana, Kecht, and

Van Dijcke (2020), we find that some of the DEX decline coincided with the timing of

shelter-in-place orders, after which the DEX dropped by approximately 20 percent.

A similar event study suggests a more modest and gradual increase in activity

following the re-opening of non-essential businesses, with the DEX increasing by

less than 10 percent relative to its pre-opening level a week after the event. We

note that given how many forces are simultaneously impacting people’s movement

during the pandemic, these simple regressions are necessarily only suggestive.

24Figure B.4 plots the population-weighted median and interquartile range of the DEX over time.
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Figure 5: DEX values by block-group demographics

(a) by educational attainment
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Notes: These plots depict the state-level DEX by demographic groups. For each state, the demo-
graphic DEX time series is divided by the level of the aggregate DEX on February 1, 2020. The
depicted series is a device-weighted average over all states. Panel A depicts this series for DEX by
education and Panel B depicts this series for DEX by race/ethnicity as defined in Section 3.

Figure 5 reveals variation in the reduction in activity across educational at-

tainment and race. Panel A depicts each DEX-education quartile relative to the

aggregate DEX on February 1. Prior to the onset of COVID-19 in the U.S., residents

of block groups with more college graduates were more exposed to other devices

than average.25 In March, exposure fell for residents of all block groups, but res-

idents of block groups with more college graduates exhibited a proportionately

greater decline. As a result, by the end of March 2020, there was little discernible

difference in device exposure across neighborhoods with different shares of col-

lege graduates. After converging, device exposure remained at low levels through

25This is consistent with the finding that devices from higher-income neighborhoods visit more
places (Chen and Pope, 2020).
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April and May, at roughly one-third of the pre-pandemic average. This represents

a 70 percent decline in the DEX for devices residing in block groups above the

median college-graduate share and a 55 percent decline in the DEX for devices in

below-median block groups.

Panel B of Figure 5 depicts device exposure by racial/ethnic demographics. Prior

to the pandemic, devices living in block groups with more Black, Hispanic, and

White residents had similar levels of exposure, while devices living in block groups

with more Asian residents had higher DEX values. From mid-March onwards, all

four demographic groups exhibited similarly low exposure levels.

The limited variation in device exposure across different demographic groups

after March 15 may imply a limited role for heterogeneous exposure rates in ex-

plaining differences in these demographic groups’ infection and mortality rates

during the pandemic. Researchers investigating these questions could combine

these local measures of social contact by demographic traits with other observed

demographic differences that may explain disparate outcomes.

These initial applications of our indices demonstrate the potential of smart-

phone movement data to quantify movement and social contact with high fre-

quency and spatial precision. We have also articulated a number of caveats relevant

for researchers using such data. We hope that our publicly available indices will

support deeper and varied investigation of human movement during the ongoing

pandemic.
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Appendix – For Online Publication

A Data appendix

A.1 Smartphone visits data

Each observed visit consists of a device, a venue, a timestamp, and an attribution

score. PlaceIQ’s attribution scores are larger when a device is more likely to have

been within a venue, based on the number and density of pings, data source of

pings, and proximity of the pings to the polygon defining the venue. We retain

all visits with an attribution score greater than a threshold value recommended

by PlaceIQ based on their experience correlating their data to a diverse array of

truth sets, including consumer spending data and foot-traffic counts. PlaceIQ

also reports a lower bound for the visit’s duration based on the time between

consecutive pings at the same venue.

We also clean the visit data to remove simultaneous visits. For instance, when

two venues are in close proximity to one other, a single visit event may have an

attribution score for both venues that exceeds the threshold value recommended

by PlaceIQ. We retain only the visit to the venue with the highest attribution score.

In other cases, the polygons of two different venues overlap.26 When two polygons

overlap, we retain polygons with an identified business category over those lacking

a category.

Table A.1 summarizes the smartphone movement data after this cleaning for

days between January 20 and March 1, 2020. On the average day, there were

176 million visits produced by 33 million devices visiting 40 million residential

and non-residential venues. The average device appears in the data for 25 days

between January 20 and March 1, but a notable number appear on only one day.
26This could happen, for instance, if the basemap contains one polygon representing a business

establishment and a second polygon representing both that building and the accompanying parking
lot.
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After we apply the device selection criteria we use when computing the LEX and

DEX indices (devices that pinged on at least 11 days over any 14-day period from

November 1, 2019 through the reporting date), there are 152 million visits from 23

million devices visiting 37 million venues on an average day. The selected devices

appear in the data between January 20 and March 1 for 35 days on average.

Table A.1: Summary statistics for cleaned visits and indices samples

Cleaned visits sample Indices sample

Mean SD 5th 95th Mean SD 5th 95th

Devices 33.43 1.92 31.15 36.58 22.80 0.49 22.05 23.61
Venues 40.46 0.81 39.17 41.51 36.88 0.92 35.35 38.28
Visits 175.85 11.33 154.15 191.12 151.56 11.30 132.59 166.74
Duration 25.81 14.31 1.00 41.00 34.91 9.89 11.00 41.00
Notes: This table summarizes PlaceIQ data for January 20, 2020 to March 1, 2020 after our
cleaning of the visits as described in the text. The counts of devices, venues, and visits are
stated in millions per day. Duration is the number of days between a device’s first and last
appearance in the data (between January 20 and March 1).

A.2 Home assignments

Residential venues are a distinct category in the PlaceIQ data. This allows us

to construct a weekly panel of home locations for a subset of devices using the

following assignment methodology:

1. For each week, we assign a device to the residential venue where its total

weekly visit duration at night (between 5pm and 9am) is longest, conditional

on it making at least three nighttime visits to that venue within the week.27 If

a device does not visit any residential location on at least three nights, then

on initial assignment that device-week pair has a missing residential location.

27Since we only observe minimum duration, there are instances where total duration is 0 across
all residential locations. In these cases, we assign the residential venue as the venue a device makes
the most nighttime visits.
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Table A.2: Venue categories in DEX

Retail 209,274
Restaurants 200,839
Gas Station/Convenience Stores 118,307
Night Clubs/Bars 88,784
Banks 79,150
Shipping 36,745
Hotels 32,303
Home Improvement Stores 27,097
Grocery Stores 25,770
Financial Services 23,238
Pharmacies 22,408
Car Dealerships 20,644
Beauty Stores 15,556
Big Box Stores 11,558
Real Estate Offices 9,732
Gyms 9,289
Car Rental 8,999
Pay Day Loan 6,043
Storage 5,935
Movie Theaters 4,632
Library 1,962
Liquor Stores 1,193

Notes: This table lists the venue categories that enter the computation of the Device Exposure
Index (DEX) and shows the total number of distinct venues on 30 June 2020 in each category.
Some venues belong to multiple categories, so the number of distinct venues (about three-
quarters of a million) is smaller than the sum of all rows in this table.

2. After this preliminary assignment, we fill in missing weeks and adjust for

noisiness in the initial panel using the following interpolation rules:

Rule 1: Change “X · X" to “X X X”: If the residential assignment for a week is

missing and the non-missing residential assignment in the weeks before

and after is the same, we replace the missing value with that residential

assignment.

Rule 2: “a X Y X b” to “a X X X b” where a , Y and b , Y: If a device

has a residential assignment Y that does not match the assignment X in
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the week before or after, we replace Y with X as long as Y was not the

residential assignment two weeks before or two weeks after.28

3. After step 2’s interpolation, for any spells of at least four consecutive weeks

where a device is assigned the same residential venue, we assign that venue

as a device’s "home" for those weeks. Spells of less than four weeks are set to

missing.

4. If a device has more than one home assignment and the pairwise distance

between them is less than 0.1 kilometers, we keep the home that appears for

the most weeks.

5. If a device has the same home assignment in two non-consecutive periods and

no other home assignments in between, then we assign all weeks in between

to that home assignment.

28For cases where a device’s residential location is bouncing between two places (“Y X Y X X”)
we are not able to ascertain whether Y or X is more likely to be a device’s residence in a given week
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B Figures appendix

Figure B.1: Balance of devices’ residences across block groups by national demo-
graphic deciles
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Notes: This figure shows the total share of devices living in census block groups corresponding to
the national deciles for each of the four demographic categories.
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Figure B.2: DEX and DEX-A over time

Panel A: Raw Device Exposure Index

Panel B: Normalized to February 1, 2020

Notes: This figure shows the population-weighted median unadjusted and adjusted device expo-
sure indices (DEX and DEX-A) over time.
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Figure B.4: Interquartile Range of DEX over time

Panel A: Raw Device Exposure Index

Panel B: Normalized to February 1, 2020

Notes: This figure shows the population-weighted median and interquartile range, of the device
exposure index over time.
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Figure B.5: Changes in DEX Relative to Lockdown Policies

Panel A: Using All Variation

Panel B: Only Using Cross-State Variation within Commuting Zones

Notes: Each plot in this figure presents the coefficients estimated in a regression of the county-level
device exposure index on dummies for the time since a given policy change. In Panel A, these
regressions also include county and date fixed effects. In Panel B, the regressions include county
and commuting zone-by-date fixed effects. Each plot presents the results for a different state-wide
policy, each drawn from Raifman, Nocka, Jones, Bor, Lipson, Jay, and Chan (2020). Each point
represents the coefficient on the dummy for a given number of days since the policy was instituted,
with the bands reflecting 95% confidence bounds on those estimates.
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