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On the Contribution of Technology Shocks 
to Business Cycles 

S. Rao Aiyagari* 
Research Officer 
Research Department 
Federal Reserve Bank of Minneapolis 

The paper "Time to Build and Aggregate Fluctuations" by 
Kydland and Prescott (1982) has led to a controversy in 
the literature on business cycles concerning the extent to 
which technology shocks are responsible for  aggregate 
fluctuations  in the U.S. economy. Prescott (1986b, p. 29) 
has suggested that "technology shocks account for  more 
than half  the fluctuations  in the postwar period, with a 
best point estimate near 75 percent." Since then, several 
people have questioned this conclusion and suggested that 
the contribution of  technology shocks is much lower than 
the figure  calculated by Prescott.1 

The policy importance of  figuring  out the relative con-
tribution of  different  sources of  economic fluctuations 
arises from  the following  considerations.2 Sometimes the 
choice of  a policy instrument can depend on the relative 
contribution of  different  shocks to fluctuations.3  Some-
times the exact nature of  a desirable policy rule can de-
pend on the nature of  shocks. That is, how government 
policy variables should respond to observable variables 
like output and investment can depend on whether fluctua-
tions are due to technology shocks or some other shocks.4 

If  the root sources of  fluctuations  are not observable di-
rectly (unlike, say, the weather) or indirectly, then the 
government has to solve a signal extraction problem to 
determine optimal government policy. The solution of  any 
signal extraction problem depends on the relative contri-
bution of  different  sources of  fluctuations  to observables.5 

Therefore,  it becomes important to determine the contribu-
tion of  different  shocks to economic fluctuations. 

*The author thanks Ed Green, Zvi Eckstein, Mark Gertler, Larry Christiano, Neil 
Wallace, Ed Prescott, Jim Schmitz, and Warren Weber for  helpful  discussions and 
comments. He also thanks seminar participants at the Federal Reserve Bank of  New 
York and New York University for  comments. 

Summers (1986) offers  a particularly blunt and negative assessment of  Prescott's 
conclusion, suggesting that it is plagued by various types of  measurement errors and 
that the true contribution of  technology shocks is probably very small and may even be 
zero. Since then, several researchers—including Hall (1987,1988), Eichenbaum (1991), 
and Bumside, Eichenbaum, and Rebelo (1993)—have also argued that Prescott's mea-
sure of  the importance of  technology shocks is very imprecise and may be too high. 

2Of  course, I am presuming that there are some market imperfections  which make 
some government policy other than laissez-faire  desirable. I should note that the models 
of  Kydland and Prescott (1982) and Prescott (1986a) are of  competitive market econo-
mies in which aggregate fluctuations  are socially optimal. The models of  some of  their 
critics who argue that the contribution of  technology shocks is much lower than that 
calculated by Prescott have the same feature.  Hence there is no useful  role for  policy 
in any of  these models. I am also presuming that fluctuations  are not the result of  ran-
dom variations in government policy variables unrelated to economic variables. If  this 
were not the case, then the solution to the policy problem would seem simple. Since 
it is hard to imagine how such government policy shocks can contribute to welfare,  it 
seems desirable to eliminate them entirely or at least follow  appropriate procedures to 
minimize such policy shocks. 

3For example, in an IS/LM model, Poole (1970) shows that whether the monetary 
authority should use a money supply rule or an interest rate rule depends on the relative 
variances of  shocks to the IS curve (like animal spirits, saving propensity, government 
consumption, or taxes) and the LM curve (like liquidity preference  shocks). 

4For example, consider an economy in which lump-sum taxes are not feasible  and 
revenues must be raised by a proportional labor income tax. In such an economy, a pol-
icy to smooth taxes over time is very likely to be desirable. However, whether the pol-
icy should be procyclical or countercyclical can depend on whether the fluctuations  are 
due to changes in government consumption or changes in technology and may also 
depend on whether or not changes in technology are highly persistent. 

5Lucas (1972) was the first  to use a signal extraction model of  optimal behavior 
at the individual level to explain the positive comovement of  prices and output known 
as the Phillips  curve. In his model, individuals observe only the price level and cannot 
tell if  a movement in the price level is due to a monetary shock or a supply shock. 
Their labor supply decision depends on the price level, and the decision rule depends 
on the relative variances of  these two shocks. Consequently, movements in the mone-
tary shock lead to movements in the price level and thereby to movements in labor 
supply and output. 
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In this article, I will argue that the various measures of 
the contribution of  technology shocks to business cycles 
calculated using the real business cycle (RBC) modeling 
method are not supported by corroborating evidence. I 
should emphasize that this criticism is not specifically 
against the number put forth  by Prescott but applies to 
most such studies regardless of  whether the particular 
number they yield is large or small. One—or none—of 
these numbers may be right, but there is no way to know 
based solely on the properties of  these models and the 
data. 

Then I will describe a different  and much simpler 
method for  calculating the extent to which technology 
shocks contribute to business cycles, which is the main fo-
cus of  my article. This method is designed to take account 
of  facts  concerning the productivity/labor input correlation 
and the variability of  labor input relative to output and has 
the following  implications: 

• Under the standard assumptions of  competitive mar-
kets, no external economies of  scale, and no mea-
surement errors, 
> Either the contribution of  technology shocks must 

be large (at least 78 percent), or the predictions 
concerning the productivity/labor input correlation 
and the variability of  labor input relative to output 
will be incorrect. 

> A large magnitude of  the aggregate intertemporal 
labor supply elasticity is not necessary for  explain-
ing the observed fluctuation  in labor input. Hence 
some of  the work in RBC modeling that has at-
tempted to modify  the basic growth model by in-
creasing the intertemporal labor supply elasticity 
has been quite unnecessary. Instead, work should 
have focused  on incorporating shocks other than 
technology into these models. 

> Contrary to the argument of  Eichenbaum (1991), 
the contribution of  technology shocks can be esti-
mated fairly  precisely. 

• The point estimate of  the contribution of  technology 
shocks can be lower than 78 percent under alternative 
assumptions involving imperfect  competition, exter-
nal economies of  scale, overtime wage premiums, 
and measurement errors (especially systematic errors 
in measuring labor input) while still resulting in cor-
rect predictions for  the productivity/labor input cor-
relation and the variability of  labor input relative to 
output. 

In view of  the second implication, the argument of  Pres-
cott's critics that the contribution of  technology shocks is 
much lower should be understood to imply some depar-
ture from  the standard assumptions. I will conclude by 
suggesting that it may be possible to use empirical evi-
dence from  micro studies at the firm  and household level 
to determine whether the standard assumptions or some 
alternative assumptions are appropriate. Thus it may be 
possible to narrow the range of  disagreement regarding 
the contribution of  technology shocks. 
Problems With Measures 
Based on Real Business Cycle Models 
Perhaps the best way to explain the problems with current 
RBC model-based measures of  the importance of  technol-
ogy shocks is by analogy with the price and quantity de-
termination in a single market, in terms of  the usual sup-
ply/demand apparatus. Suppose that the supply and de-
mand curves are being shifted  by many random influ-
ences, one of  these being random changes in technology. 
(For simplicity, I will assume that any particular shock 
affects  either supply or demand, but not both, and that the 
various shocks are mutually independent.) Clearly, equi-
librium price and quantity will be fluctuating  randomly. 
A modeler of  such a market, who is interested in how 
much technology shocks contribute to quantity fluctua-
tions, could specify  a supply/demand model in which only 
technology shocks enter (say, on the supply side), calcu-
late the variance of  quantity (which is a measure of  how 
much quantity fluctuates  in the model), express this as a 
ratio to the variance of  quantity in the data, and report that 
as the contribution of  technology shocks to quantity fluc-
tuations. Let us call this ratio <j). 

How would one defend  the calculated value of  <\> as 
plausible? One possibility is to compare the model's pre-
dictions for  the price/output correlation and the variance 
of  price with the data. However, if  <|> is not close to unity, 
then such a comparison would not make sense since, ad-
mittedly, the model is omitting some shocks which are 
present in the data and which significantly  affect  the 
price/output correlation and the degree of  price fluctuation. 
Therefore,  there is no way to judge if  the calculated value 
of  <\> is plausible or not. Further, given that the model is 
missing some quantitatively significant  shocks, it would 
appear to be better if  the model's predictions were wrong. 
But, again, there is no way to say by how much they 
would have to be wrong in order for  the calculated value 
of  <|> to be right. 

RBC models are basically similar to a supply/demand 
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model except that the RBC analysis is of  a general equi-
librium nature and may include some shocks in addition 
to technology shocks. The RBC modeler specifies  the 
technology and the preferences  and endowments of  the 
individuals in the model economy using particular func-
tional forms  and parameter values. These are used to cal-
culate the unconditional variance of  output in the model 
economy when only technology shocks are present. This 
is expressed as a fraction  (denoted <\>) of  the variance of 
output in the U.S. economy, and <|> is taken to be an esti-
mate of  the contribution of  technology shocks to output 
fluctuation. 

The view underlying many RBC models (certainly 
those with only technology shocks in them) seems to be 
that the models are missing quantitatively important 
sources of  fluctuations.6  As Prescott (1991, p. 6) has said, 
"To estimate the model is to implicitly assume that tech-
nology shocks are the only significant  source of  fluctua-
tions. That is not a hypothesis we were willing to main-
tain." That is, under this view, a close match of  model sta-
tistics with those in the data cannot be used to corroborate 
the calculated value of  (|).7 Indeed, as noted in the sup-
ply/demand example, it would appear to be better if  the 
model statistics were not close to the values in the data. 
As Prescott has noted (1991, p. 6), "Mimicking is not al-
ways good." However, as noted earlier, for  this to be use-
ful  in practice, one needs to know by how much the mod-
el statistics should miss those in the data. Since this is of-
ten not possible, it is difficult  to evaluate the plausibility 
of  these models and thereby defend  the contribution of 
technology shocks implied by them. 

The above comments apply also to the models of  some 
of  Prescott's critics. Sometimes the output variance gen-
erated by their models is significantly  lower than that of 
the data, suggesting that their models are missing some 
shocks that explain the remaining portion of  output vari-
ance. One cannot then defend  the calculated value of  § by 
comparing model statistics with those in the data (using 
either informal  or formal  econometric methods), since it 
is hard to maintain that the data were (even approximate-
ly) generated by the model at hand. 

As an example, consider the work of  Burnside, Eichen-
baum, and Rebelo (1993), who incorporate a labor hoard-
ing feature  (as suggested by Summers 1986) into an RBC 
model. Some versions of  this model (with both technology 
shocks and government consumption shocks) generate 
output variance that is only 30-40 percent of  that of  U.S. 
data. (See the values of  X for  "Labor Hoarding I" and 

"Laboring Hoarding II" in their Table 4.) Hence the con-
tribution of  technology shocks alone is implied to be even 
lower. On this basis, Burnside, Eichenbaum, and Rebelo 
(1993) argue that the contribution of  technology shocks 
may be much lower than Prescott's figure.  And yet they 
suggest (p. 255) that "the labor hoarding model does at 
least as well as the Hansen-Rogerson model at accounting 
for  the volatility of  hours worked and the relative volatil-
ity of  consumption, investment, average productivity, and 
government consumption" (Hansen 1985, Rogerson 1988). 
Elsewhere (p. 260) they state, "Burnside et al. (1991) ar-
gue that the labor hoarding model is better able to account 
for  the joint behavior of  average productivity and hours 
worked than the standard model." It cannot be a good fea-
ture of  a model that it matches various correlations in the 
data while missing shocks that account for  possibly as 
much as 70 percent of  output variance.8 

Clearly, the contribution of  technology shocks to busi-
ness cycles calculated using RBC models is unsupported 
by corroborating evidence. 

6AS Prescott (1986b, p. 29) notes in his response to Summers, "I only claim that 
technology shocks account for  more than half  the fluctuations  in the postwar period, 
with a best point estimate near 75 percent. This does not imply that public finance  dis-
turbances, random changes in the terms of  trade, and shocks to the technology of  ex-
change had no effect  in that period." Note that Prescott's model only has technology 
shocks in it. 

7Comparing selected model statistics with those of  the data appears to be a com-
mon practice. (See, for  example, Kydland and Prescott 1982; Hansen 1985; Christiano 
and Eichenbaum 1990; Benhabib, Rogerson, and Wright 1991; and Burnside, Eichen-
baum, and Rebelo 1993.) The typical statistics that these studies focus  on are the stan-
dard deviations (relative to output) and cross-correlations (with output) of  variables like 
consumption, investment, labor input, and productivity. However, it may be possible 
to compare aspects of  the model's predictions which are somewhat insensitive to the 
shocks that are not included. For instance, one may try to compare impulse response 
properties of  the model (for  those shocks that are included) with those in the data. This 
is the method adopted by King (1991) and Rotemberg and Woodford  (1992). Of 
course, the assumption that the impulse responses for  the included shocks are somewhat 
insensitive to the shocks the model is abstracting from  is essential, but without this, the 
only alternative is to try to include all the shocks one thinks are important. In that case, 
there is no advantage to looking at impulse responses, as opposed to looking at stan-
dard deviations and cross-correlations. 

8In fact,  in RBC models, there is no guarantee that the contribution of  technology 
shocks will come out to be at most 100 percent; that is, one may be led to the nonsen-
sical conclusion that technology shocks account for  a lot more than 100 percent of  out-
put fluctuations.  For an example of  this, see Burnside, Eichenbaum, and Rebelo 1992. 
They consider the Hansen (1985) model with technology shocks and government con-
sumption shocks. As can be seen from  their Table 5 (columns labeled "Hansen-
Rogerson"), the ratio of  output variance generated by the model (with both shocks) to 
that of  U.S. data (denoted by A, in the table) may be as high as 168 percent. Since gov-
ernment consumption shocks contribute negligibly to output variance, I can conclude 
that in these examples technology shocks contribute significantly  more than 100 percent 
to output variance. (Compare values of  X for  variable government and constant govern-
ment in Eichenbaum 1991, Table 1.) Even if  the contribution of  technology shocks 
alone is less than 100 percent, the fact  that technology and government consumption 
shocks together generate much more output variance than in the data makes the model 
unattractive. 
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A Simpler Method of Measuring 
Here I will present a different  and much simpler method 
that is based on a variance decomposition procedure, im-
poses a minimum of  theoretical structure on the data, uses 
only information  on contemporaneous correlations, and 
does not rely on measures of  Solow residuals.9 This is in 
contrast to the elaborate dynamic theoretical structure im-
posed in RBC modeling methods and the use of  measured 
Solow residuals. 

In my method, a lower bound for  the contribution of 
technology shocks is derived by calculating the relative 
strength of  technology versus other shocks, which is re-
quired to match two key features  of  the data: the con-
temporaneous productivity/labor input correlation and the 
variability of  labor input relative to output. (These two 
numbers determine all the other standard deviations and 
cross-correlations among the three variables: output, labor 
input, and productivity.) The intuition behind how the ob-
served values of  the productivity/labor input correlation 
and the variability of  labor input relative to output can be 
used to deduce the contribution of  technology shocks and 
nontechnology shocks to business cycles is as follows. 
Suppose, for  the sake of  illustration, that the production 
technology satisfies  diminishing returns to labor input. If 
nontechnology shocks were the only source of  fluctua-
tions, then clearly labor input would fluctuate  more than 
output, and the productivity/labor input correlation would 
be close to negative unity. If  technology shocks were the 
only source of  fluctuations,  however, then labor input 
would generally fluctuate  less than output, and the pro-
ductivity/labor input correlation would be close to unity. 
Therefore,  the empirically observed values of  these two 
statistics can be used to deduce the relative strengths of 
technology versus nontechnology shocks and hence the 
contribution of  technology shocks to business cycles.10 

There are three key steps in my analysis. The first  is 
the specification  of  technology. This is specified  as 

(1)  yt = a(nt+zt) 

for  a > 0, where yt, nv and zt denote the logarithms of 
these economy wide variables in period t: output, labor in-
put, and technology level, respectively. 

The essential features  of  equation (1) are omission of 
capital input and log-linearity. Effectively,  capital is being 
treated as a fixed  input so that its role in production need 
not be specified.  This is justified  by appealing to the fol-
lowing fact. 

FACT 1. Movements  in capital  are small  and contribute 
negligibly  to movements in output  over short  periods  of 
time corresponding  to the length  of  a typical  business 
cycle.11 

The log-linear specification  may be justified  as a locally 
valid approximation to the production function.12 

The second key step of  my analysis is the following 
representation of  the effects  of  technology and other 
shocks on labor input: 

(2) nt = 50 z, + i 8jZH+Ej^i/u-y+  ^ J v ^ H 

where xx t, x2t, x3r and so on, are the different  nontech-
nology shocks in period t. Equation (2) may be thought of 
as the decision rule for  labor input resulting from  some 
dynamic equilibrium model.13 The specification  in (2) is 
quite general (except for  the log-linearity) since labor in-
put in a period depends on all current and past values of 
random shocks to the economy. 

I will assume that the nontechnology shocks are uncor-

9The Solow residual in period t is defined  as exp[yt-Qkk-Qntit],  where y,,kt, and 
nt are the logs of  output, capital, and labor input in period t, respectively, and and 
0„ are the shares of  capital and labor income in output. Under some assumptions, the 
Solow residual in period t coincides with the technological change index. (See Solow 
1957.) 

10The definition  of  business cycle fluctuations  used here is that of  Hodrick and 
Prescott (1980). That is, the correlations from  the data that I will use are calculated 
using the deviations of  the logarithms of  output, labor input, and productivity from  their 
respective Hodrick-Prescott trends. The main reason for  this is to maintain comparabil-
ity with RBC studies since this is a commonly used procedure in most RBC studies. 
In general, the contribution of  technology shocks can differ  based on the detnending 
procedure used. By using the Hodrick-Prescott definition  of  business cycle fluctuations, 
I am implicitly measuring the contribution of  technology shocks at the frequencies  em-
phasized by this detrending procedure. The way this difference  will show up in my 
framework  is that the values of  the correlations that are used will generally differ  with 
different  detrending procedures. 

1 1 Empirically, most short-run fluctuations  in output are due to fluctuations  in the 
labor input, and fluctuations  in capital are small. According to postwar U.S. data (Han-
sen 1985, Table 1), the correlation between output and capital stock is 0.04; that is, 
movements in output and capital are almost unrelated over short periods of  time. 
Further, the standard deviation of  capital relative to that of  output is only 0.36, com-
pared to 0.94 for  the standard deviation of  labor input relative to that of  output (Hansen 
1985, Table 1). 

12The specification  in (1) can be consistent with variable capacity utilization as 
long as capacity utilization varies one-for-one  with the labor input. Note that I have not 
restricted the value of  a to be less than unity, which corresponds to diminishing returns. 
Diminishing returns may be reasonable even with variable capacity utilization if  in-
creasing labor input (and capacity utilization) leads to more frequent  breakdowns of 
capital equipment and larger (total and marginal) maintenance expenditures, so that out-
put net of  maintenance expenditures is subject to diminishing returns. 

13One such example is Kydland and Prescott 1982, in which past leisure is used 
as an argument in the utility function.  The effects  of  lagged z's are absent in the sim-
pler models of  Hansen (1985) and Christiano and Eichenbaum (1990). 
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related with the technology shock at all leads and lags. I 
will interpret the xt /s as either innovations in other ex-
ogenous nonpolicy variables (like the weather) or as poli-
cy shocks, that is, shocks in the decision rules for  policy 
variables. Under this interpretation, my assumption is rea-
sonable.14 

The third key step of  my analysis is to decompose the 
influences  on labor input into two mutually orthogonal 
parts: one arising from  the current technology shock and 
the other capturing everything else that is uncorrelated 
with the current technology shock. Using this idea, I can 
rewrite equation (2) as 

(3) nt = yzt + 

where 

(4) y= cov(«,,z,)/var(z,) = 50 + £ 5ycov(z,,z,_p/var(z,) 

(5) £, = co, + *, 

(6) co, = £ . = 1 8 j Z H  - zt[£j=lbjcov(z,,z,_;)]/var(z,) 
_ _ o o _ _ o o _ _ oo 

( 7 ) xt = Z^jJ^ljXu-j+zZjJ^lfrj-j+zljjxfot-j  + •••• 
Note that is uncorrelated with zt; that is, cov(£,,z,) = 

0, because co, and xt are uncorrelated with zv Consequent-
ly, the variance of  output is also decomposed into two 
mutually orthogonal parts: one arising from  variability in 
the current technology shock and the other from  every-
thing else that is uncorrelated with the current technology 
shock. In this way, the large number of  unknown coeffi-
cients (8;) and the variance of  x relative to z are replaced 
by a single unknown coefficient  y and the variance of  £ 
relative to that of  z. To show how these latter two objects 
can be determined, let 71 denote the logarithm of  labor pro-
ductivity so that 

(8 ) nt = yt - nt = azt - (1-a)nt 

= [a- ( l -a)y]z , - ( l -aK, 

and let 

(9) q = var(Q/var(z) 

(10) p = corr(7it,nt) 

(11) a = [var(Az,)/var(j,)]1/2. 

Using equations (1), (3), (8), and (9), I can derive the 
following  expressions for  p and a: 

(12) p2 = {y[a - (l-a)y] - (l-a)?}2 -
( ( ^ { [ a - d - ^ y ^ + d - a ) ^ } ) 

(13) a 2 = (y2^)/{a2[(l+y)2 + ̂ ]}. 

If  I have a value for  the parameter a in (1), then equa-
tions (12) and (13) can be used to find  values of  y and q, 
such that the resulting values of  p and a will match the 
values in the data. These values of  y and q can then be 
used in the following  way to calculate a lower bound (de-
noted (J)*) for  the contribution of  technology shocks. 

Let var(y\x)  denote the variance of  output conditional 
on the x-shocks; equivalently, it is the variance of  output 
when only technology shocks are present. Let var( y) de-
note the variance of  output when technology shocks as 
well as other shocks are present. Then a measure of  the 
contribution of  technology shocks to output fluctuation  is 
given by var(j|x)/var(j) and is denoted by (|). It can be 
seen that § takes the value unity if  all of  the variation in 
output is due to technology shocks and the value zero if 
all of  the variation in output is due to other shocks. The 
expression for  (|) is given as 

(14) <|> = var( y |x)/var( y) 

= a2[(l+y)2var(z) + var(co)] -r 

{a2[(l+y)2var(z) + var(Q]} 

> (l+y)2var(z)/[(l+y)2var(z) + var(Q] 

= (l+y)2/[(l+y)2 + var(Q/var(z)] 

= (i+y)2/[(i+y)2 + q] 

The intuition described earlier in this section can be 
seen in the above equations. Suppose, for  simplicity, that 
lagged z's are absent in (2) so that y = 80, co, = 0, and 
= xr (For examples, see the model of  Hansen 1985 and 
the basic growth model of  Prescott 1986a.) Note that (|) = 

14If  some of  the Jt's represent policy shocks (such as a shock to the policy rule for 
government consumption), then the implicit view underlying this assumption is that any 
correlation between corresponding policy variables (government consumption) and the 
technology shock is due to endogenous policy rather than the effects  of  policy variables 
on technology. That is, that part of  the effect  of  government consumption on labor in-
put that is due to the correlation between government consumption and the technology 
shock is taken to be the result of  endogenous policy and is attributed to the technology 
shock. Some assumption of  this sort is necessary in order to talk about the contribution 
of  technology shocks. 
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<|>* in this case. If  nontechnology shocks were the only 
source of  fluctuations,  then <\> = 0 and q = °°,  and (12) and 
(13) would imply that p = -1 and o = 1/a. If  returns to 
labor input are diminishing so that a < 1, then a > 1. 
Thus the productivity/labor input correlation is negative 
unity, and labor input fluctuates  more than output. If  tech-
nology shocks were the only source of  fluctuations,  then 
<|> = 1 and <7 = 0, and (12) and (13) would imply that p = 
1 and a = y/[a(l+y)].15 

In the general case, the values of  y and q calculated 
using (12) and (13) can be used in (14) to calculate <()*, 
which provides a lower bound for  (|) (the fraction  of  output 
variance arising from  technology shocks). 

Implications Under Standard Assumptions 
I will now implement this method under the following 
standard assumptions (common in many RBC models) 
and facts  regarding the U.S. economy. 

ASSUMPTION 1. Perfect  Competition 
Product and labor markets are competitive; that is, firms 
behave as price takers in product as well as labor markets. 
ASSUMPTION 2. No  External  Economies 
The response of  output to labor input is the same at the 
individual firm  and the economy wide levels and exhibits 
diminishing returns to labor. 
ASSUMPTION 3. No  Measurement  Errors 
There are no (significant)  measurement errors in output or 
labor input. 

FACT 2. The  correlation  between productivity  and labor  in-
put (p) is about zero.16 

FACT 3. The  variability  of  labor  input  relative  to output  (A) 
is about 0.85.17 

FACT 4. The  share of  labor  income in output,  denoted  0, is 
about 0.64. 
By virtue of  Assumptions 1 and 2 and profit  maximiza-
tion, it follows  that a equals the labor share and hence is 
about 0.64.18 Using this value for  a, I display in Chart 1 
graphs of  <|)* (the lower bound on the contribution of  tech-
nology shocks) versus p (the productivity/labor input cor-
relation) for  three different  values of  o (the relative vari-
ability of  labor input).19 

I will now display the various implications of  my 
method under standard assumptions (Assumptions 1-3). 
Later I will display the implications of  several alternative 
assumptions. 

Large  Technology  Shock  Contribution 
First, I will show that under the standard assumptions, any 
RBC model must either yield a large contribution of  tech-
nology shocks (above 78 percent) or make counterfactual 
predictions concerning the productivity/labor input correla-
tion and the variability of  labor input relative to output. 
This follows  from  two considerations. First, when p = 0 
and a = 0.85 (as dictated by Facts 2 and 3), Chart 1 indi-
cates (and my calculations confirm)  that <|>* = 0.78. Sec-
ond, my value for  <|>* is constructed under the standard as-
sumptions and in such a way that the values of  p and o 
match those in the data. Now recall that (|>* is a lower 
bound for  ((), the contribution of  technology shocks to out-
put fluctuations.  Therefore,  under the standard assump-
tions, the contribution of  technology shocks to output vari-
ation must be at least 78 percent, or the values of  p and 
o from  the model will not match the values in the data. 

Using my method, I can also show that the contribu-
tion of  technology shocks was likely lower in the 1950s 
and 1960s than in the 1970s and 1980s. Many economists 
have noted that the latter two decades were more subject 
to adverse supply shocks than were the former.  Some ex-
amples are the oil price shocks of  1973 and 1979 and the 

1 5 In the typical RBC model, since the technology shock is fairly  persistent, y is 
small, which leads to the usual result that a is significantly  less than unity. Thus the 
productivity/labor input correlation is unity, and labor input fluctuates  less than output. 

16Christiano and Eichenbaum (1990) and Baxter and King (1991) report point esti-
mates of  p equal to -0.20 and -0.04, respectively (using slightly different  time series). 
My own calculation, based on data from  the first  quarter of  1950 to the fourth  of  1988, 
yields a value of  -0.13. The standard error of  0.11 reported in Christiano and Eichen-
baum 1990, Table 4a, suggests that one cannot reject, at the 5 percent level, the hypoth-
esis that p is zero. 

17Hansen (1985) and Prescott (1986a) report point estimates for  a of  0.94. 
Christiano and Eichenbaum (1990), Baxter and King (1991), and Benhabib, Rogerson, 
and Wright (1991) report the value 0.85. Kydland and Prescott (1993) suggest that if 
differences  in the quality of  various types of  labor input are taken into account, then 
the relative variability of  labor input may be reduced by a factor  of  0.75; that is, it may 
be as low as 0.64. 

18The technology in (1) can be written as Y  = (Z/V)a, where Y,  Z,  and N  are out-
put, level of  technology, and labor input, respectively. Profit  maximization implies that 
the marginal product of  labor equals the real wage (denoted W),  so that a(Z/V)a-1Z = 
W.  Therefore,  the labor share 0 = WN/Y  = a. 

19It may seem puzzling that the relation between <})* and p is not monotonic and 
that when p is sufficiently  negative, <j>* starts getting close to unity. For instance, when 
p equals negative unity, it would seem that <|)* ought to be zero, since with only non-
technology shocks, labor input and productivity would be perfectly  negatively corre-
lated. However, with only nontechnology shocks, it is not possible to match the value 
of  c because in this case the model implies CT = 1/a, which is a lot bigger than the em-
pirical value of  a. The way to match both p and a is to have only technology shocks 
and a negative value of  y, that is, labor input has to vary negatively with the technology 
shock so that productivity and labor input move in opposite ways. This is the reason 
why (()* starts rising toward unity when p gets closer to negative unity. As can be seen 
in Chart 2, the value of  y turns negative at exactly the same value of  p at which the 
value of  (}>* reaches a minimum. 
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Chart 1 
Estimating How Much Technology Shocks 
Contribute to Output Fluctuations 
Based on Standard Assumptions in Real Business Cycle Models and U.S. Data in 1950-88 
for Likely Range of Variability of Labor Input Relative to Output (a) 

Correlation of Productivity and Labor Input (p) 

food  price shocks due to adverse weather conditions in 
1973-74 and 1978-79. The 1970-80s have also been 
characterized by a slowdown in productivity. These fac-
tors resulted in the higher and more variable inflation  rate 
in the 1970-80s than in the previous two decades. It 
seems natural to ask if  the contribution of  technology 
shocks might also have been higher in the 1970-80s. 
Using quarterly data, I have calculated the values of  p and 
o separately for  the periods 1952-69 and 1970-88 and 
found  that in the former  period, p was about -0.40 and o 
was about 1.05, whereas in the latter period, p was about 
0 and o was about 0.90. Clearly, the productivity/labor 
input correlation was significantly  more negative in 1952-
69, which suggests that the contribution of  technology 
shocks could have been lower then. (See Chart 1.) Using 
the above values of  p and a, my calculations indicate that 
the contribution of  technology shocks could have been as 
low as 55 percent in 1952-69 compared to 79 percent in 
1970-88. 

Not-So-Large  Labor  Supply  Elasticity 
Second, I will show that a large aggregate intertemporal 
elasticity of  labor supply is not necessary for  an RBC 
model to explain the observed fluctuation  in labor input. 

The basic growth model with log-linear utility, divisi-
ble labor, and only technology shocks (Prescott 1986a, p. 
16) has been considered deficient  for  two reasons: 

• The model leads to labor input varying only about 
half  as much as output compared to the empirical 
value of  a = 0.85. 

• The model also leads to a productivityAabor input 
correlation that is close to unity as compared to the 

2 0 An oil price rise may be regarded as an adverse technology shock since it 
reduces oil input in production and, when oil and labor input are complements, reduces 
the amount of  output that can be produced for  a given level of  labor input. Thus an oil 
price rise has the same effect  as a reduction in z in equation (1) specifying  the tech-
nology. 
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Chart 2 
Labor Input's Response to a Technology Shock 
Based on Standard Assumptions in Real Business Cycle Models and U.S. Data in 1950-88 
for Likely Range of Variability of Labor Input Relative to Output (a) 

Correlation of Productivity and Labor Input (p) 

empirical value of  p = 0.21 

The apparent inability of  the basic growth model to cor-
rectly predict the variability of  labor input relative to out-
put has led some researchers to consider modifications  de-
signed to increase the intertemporal labor supply elasticity 
and thereby increase the variability of  labor input relative 
to output. For instance, Kydland and Prescott (1982) con-
sider past leisure as an argument in agents' utility func-
tions, and Hansen (1985) considers indivisible labor.22 

However, I will show that these modifications  to in-
crease the aggregate intertemporal labor supply elasticity 
were unnecessary. Refer  to Charts 1 and 2, and note that 
when p is zero and a is 0.85, the values of  y and (|>* based 
on my method are 0.44 and 78 percent, respectively. Also 
note that the basic growth model maintains the standard 
assumptions. The value of  y for  a version of  the basic 
growth model is 0.45, which is close to my value of  y. 
(See Campbell 1991, Table 2, where v2 stands for  y and 
a stands for  z.) Further, the basic growth model yields 75 

percent as the contribution of  technology shocks, which is 
quite close to my value of  (J)*.23 Therefore,  I can conclude 

2 1 See the discussion in Prescott 1986a, pp. 16-20. Regarding the basic growth 
model, Prescott notes, "The most important deviation from  theory is the relative volatil-
ity of  hours and output." Also note that the observation that the "empirical labor elastic-
ity of  output" (Prescott 1986a, p. 19) is approximately unity (and hence significantly 
higher than the labor share) is equivalent to the observation that the productivity/labor 
input correlation is approximately zero. This follows  because r| = cov(n,y)/vai(ri)  = 
[cov(« ,K)  + var(n)]/var(n). This has also been noted by Christiano and Eichenbaum 
(1990). 

22The basic growth model of  Prescott (1986a) implies an elasticity of  labor supply 
with respect to a temporary change in the real wage of  2. The Kydland and Prescott 
(1982) model implies a value of  over 6 for  the corresponding elasticity, and the indivis-
ible labor model of  Hansen (1985) implies a value of  infinity  for  this elasticity. See 
Prescott 1986a, pp. 14-19. 

23If  somewhat different  parameter values for  preferences,  and the like, are used, 
then the value of  y for  such a model could range from  0.24 to 0.49. Christiano and 
Eichenbaum (1990, Table 2) report values of  0.30 and 0.49. (The coefficient  en corre-
sponds to my y.) Campbell (1991, Table 2) reports a value of  0.24. However, these al-
ternative values can be quite consistent with my analysis. As I will show momentarily, 
given the sampling variability in the values of  p and a, values of  y ranging from  0.23 
to 0.49 can also provide quite a good match with the data. 
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that the basic growth model is quite capable of  matching 
features  of  the data regarding output, labor input, and 
productivity, once nontechnology shocks are included. 

The intuition behind this conclusion is simple. Recall 
that with only technology shocks, the basic growth model 
predicts a productivityAabor input correlation near unity 
and one-half  as much variability in labor input relative to 
output.24 Adding in shocks to something other than tech-
nology—which I will call the x-shocks—serves to bring 
both of  these model statistics close to the empirical values. 
The x-shocks make productivity and labor input move in 
opposite directions and serve to bring their correlation 
down to about zero. The Jt-shocks also make labor input 
vary more than output, because the parameter a in equa-
tion (1) is less than unity; a 1 percent change in labor in-
put due to the x-shocks will change output by less than 1 
percent. Thus the x-shocks raise the relative variability of 
labor input toward the value implied by the data. 

It follows  that attempts to modify  the basic growth 
model by increasing the intertemporal elasticity of  labor 
supply were unnecessary. Instead, work should have fo-
cused on incorporating shocks other than technology into 
the model. 

More  Measurement  Precision 
I will now show that under the standard assumptions, and 
contrary to Eichenbaum's (1991) argument, the contribu-
tion of  technology shocks can be estimated fairly  precise-
ly. To demonstrate this, I can use Chart 1, since it is con-
structed by forcing  the model's predictions for  p and a to 
match the values in the data. I take the 95 percent confi-
dence interval for  p to be [-0.35,0.09] and the 95 percent 
confidence  interval for  a to be [0.70, 0.94].25 As p ranges 
from  -0.35 to 0.10 and a ranges from  0.70 to 0.94 (in 
Chart 1), the values of  range, roughly, from  0.65 to 
0.90.26 While there is some uncertainty regarding the val-
ue of  (|) due to sampling variability in the values of  p and 
a, the extent of  uncertainty in (f>  is much less than has 
been suggested by Eichenbaum (1991). 

Eichenbaum (1991) argues that there is a considerable 
degree of  imprecision attached to Prescott's measure of 
the importance of  technology shocks due to sampling vari-
ability in some of  the estimated parameters. (See Eichen-
baum 1991, Table 1, Figure 1, and the accompanying dis-
cussion on p. 614.) Referring  to a model in which tech-
nology shocks are the only shocks, he writes that (p. 614) 
"we ought to be very comfortable  believing that the model 
explains anywhere between 5% and 200% of  the variance 

in per capita US output." This conclusion ignores the mis-
match between the model's predictions for  p and a and 
the values in the data that will result if  the contribution of 

97 
technology shocks is too low or too high. Ignoring val-
ues over 100 percent as inadmissible, consider the possi-
bility that the contribution of  technology shocks could be 
as low as 5 percent (or as high as 95 percent). In order to 
entertain this possibility, one would also have to entertain 
the possibility that when other shocks that account for  the 
remaining 95 percent (or 5 percent) of  output variance are 
put into the model, the values of  p and a will match those 
in the data. In fact,  my calculations show that this cannot 
happen. When proper attention is paid to matching the 
model's predictions for  p and a with the values in the da-
ta, the sampling variability in <\> is much lower. 
Implications Under Alternative Assumptions 
In this section, I will show how the contribution of  tech-
nology shocks can be lower than 78 percent under several 
alternative assumptions considered in the literature while 
still resulting in correct predictions for  p and a. I will 
consider the following  alternatives to the standard as-
sumptions: 

• Monopolistic competition in product markets. 
• External economies of  scale. 
• Overtime wage premiums. 
• Monopsonistic competition in labor markets. 
• Errors in the measurement of  output and labor input. 
Note that Assumptions 1 and 2 together with Fact 4 

were only used in deriving an estimate of  the parameter 
a and that the first  four  alternatives involve changing ei-
ther Assumption 1 or Assumption 2. Therefore,  I only 
need to analyze how those alternatives will change the 
value of  a. Then this value of  a can be used to calculate 
y and just as before.  In each case, the result will be to 

24The productivityAabor input correlation will be near unity, provided y is between 
zero and a/(l-a). As noted earlier, negative values of  y will lead to a negative produc-
tivity/labor input correlation. (See Charts 1 and 2.) 

2 51 use the standard errors for  p and a reported in Christiano and Eichenbaum 
1990, Table 4a, of  0.11 and 0.06, respectively, along with the point estimates of  -0.13 
and 0.85, respectively. 

^It is also possible to take account of  sampling error in the measurement of  labor 
share in output which is used to calculate a. However, the standard error reported in 
Christiano and Eichenbaum 1990, Table la, suggests that the labor share is determined 
quite precisely. Values of  9 are unlikely to be outside the range from  0.63 to 0.65. 

27The models of  Hansen 1985 and Prescott 1986a have the feature  that <|)* and 0 
coincide because lagged values of  z do not appear in the labor input decision rule. [See 
equation (2).] 
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deliver a higher value of  a, which turns out to lower the 
value of  <|>*. 
Monopolistic  Competition 
Suppose that firms  are monopolists in the product markets 
and face  a downward-sloping demand curve with price 
elasticity equal to r\. Then profit-maximizing  behavior on 
the part of  firms  implies that firms  will equate the margin-
al revenue product of  labor to the real wage. It follows 
that 0, the share of  labor income in output, equals a[l -
(l/r|)]. As can be seen, a particular value of  the labor 
share will imply a higher value of  a under monopolistic 
competition as compared to perfect  competition (r| = °o). 

In order to come up with a value for  a, I will also need 
to have some idea of  the elasticity of  demand in product 
markets. Work by Hall (1987, 1988) suggests that values 
of  T| range from  about 2 to about 6 depending on the in-
dustry. If  I take 4 as a benchmark value for  r|, then using 
the value of  0.64 for  the labor share, I find  that a must be 
about 0.85. Using this value, my calculations indicate that 
when p = 0 and a = 0.85, the value of  <\>* = 0.54. Thus 
taking account of  monopolistic competition can lower the 
contribution of  technology shocks. 

External  Economies  of  Scale 
Here I relax the part of  Assumption 2 which states that 
the relation between output and labor input is the same at 
the individual firm  level as well as the economywide lev-
el. In particular, I assume that the production technology 
at the firm  level exhibits external economies of  scale. 
Baxter and King (1991) argue that such external econo-
mies may be important and have presented some evidence 
in support of  this view. The following  formulation  of  in-
dividual firm  technology is borrowed from  their paper: 

(15) yt(f)  = eyt + a'[nt(f)  + zt] 

where y(f)  and n(f)  represent the logarithms of  individual 
firm  output and individual firm  labor input, respectively, 
and 8 represents the effect  of  external economies. 

Assuming that all firms  are identical, I can aggregate 
the above relationship over all firms  [by setting y(f)  and 
n(f)  equal to y and n, respectively] and obtain the follow-
ing relationship between aggregate output and aggregate 
labor input: 

( 1 6 ) yt=mi-E)](nt+zt). 

By comparing (16) and (1), I find  that 

(17) a = a7(l-e). 

Note that according to the technology in (15) and (16), 
when markets are competitive, a ' equals the labor share 
of  income, which I have taken to be 0.64. Therefore, 
equation (17) implies that a > a' = 0.64. In order to come 
up with a value for  a, I will now need to have an estimate 
for  8 in addition to 9, the share of  labor income in output. 
Baxter and King (1991) discuss the existing empirical evi-
dence regarding 8 and use a value of  8 = 0.23, which if 
combined with a labor share of  0.64 yields a value of  a 
= 0.83. This is very close to the value of  0.85 for  a that 
was used in the monopolistic competition case. Therefore, 
I can conclude that when p = 0 and a = 0.85, the value of 
(|)* = 0.54. Thus taking account of  external economies of 
scale can also lower the contribution of  technology shocks 
to output fluctuation. 

Overtime  Wage  Premiums 
Lucas (1970) suggests that the real wage may be procycli-
cal even in the absence of  any technology shocks if  over-
time labor is more expensive to hire than normal straight-
time labor. One way to capture this in my framework  is 
to assume that the firm  faces  an upward-sloping schedule 
relating the marginal wage to labor input.28 Like the pre-
vious two factors,  this factor  causes an increase in the val-
ue of  a to be used in my calculations and thereby reduces 
the contribution of  technology shocks. 

To see this, let w(s) be the (increasing) marginal wage 
paid when labor input is s. Let 

(18) K = 

be the elasticity of  the total wage bill with respect to total 
labor input (denoted N).  From profit  maximization, the 
marginal product of  labor (denoted MPL)  equals w(N). 
Therefore,  the labor share of  output is 

(19) Q=[f"w(s)ds]/Y 

= Nw(N)/(KY) 

= [(N  x MPL)/Y]/k. 

Using the form  of  the production function  (1), I then have 

28Recall (from  footnote  12) the interpretation of  the production function  (1) as aris-
ing from  a fixed  coefficients  technology with possible diminishing returns to higher-
capacity utilization. 
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0 = OC/K. Since W(-) is increasing, K > 1 and therefore  a 
> 0. Hence the contribution of  technology shocks can be 
lower. To say how much lower, I would need an estimate 
of  the elasticity parameter K 2 9 

Monopsonistic  Competition 
The analysis is similar under monopsony. To see this, let 
\|/ be the elasticity of  the wage with respect to the labor 
input. Profit-maximizing  behavior on the part of  the firm 
now implies that the firm  will set the marginal product of 
labor to equal W  x (1+\|/), where W  is the wage. There-
fore,  the share of  labor income in firm  output is 

(20) 0 = WN/Y  = [(N  x MPL)/(l+\\f)]/Y  = a/(l+\|/). 

It follows  that a given value of  the labor share, 0, will 
now imply a larger value of  a if  \|/ is positive. Therefore, 
the contribution of  technology shocks can be lower. To go 
beyond this and say how much lower, I would need an es-
timate of  the elasticity parameter \|/. 

Measurement  Errors 
In Assumption 3,1 assumed that output and labor input 
were measured without error. Here I address departures 
from  this assumption. There are three types of  measure-
ment errors: sampling errors, unsystematic measurement 
errors, and systematic measurement errors. I have already 
covered sampling error in my discussion of  Eichenbaum's 
(1991) criticism of  the models of  Hansen (1985) and Pres-
cott (1986a). Here I will discuss the other types of  mea-
surement errors. 
• Unsystematic 
Several researchers argue that unsystematic measurement 
errors, especially in the measurement of  labor input, may 
be quite important (Hansen 1985, Prescott 1986a, and 
Christiano and Eichenbaum 1990). Unsystematic measure-
ment error in labor input will result in an overstatement of 
the relative variability of  labor input (a) and an under-
statement of  the productivity/labor input correlation (p). 
That is, the measured relative variability will be higher 
than the true variability, and the measured correlation will 
be less than the true correlation. Since the measured corre-
lation is about zero, the true correlation is positive. This 
suggests that the contribution of  technology shocks can be 
even greater than my calculations indicate. (See Chart 1.) 
The overstatement of  the relative variability of  labor input 
has an ambiguous effect. 

Unsystematic measurement error in output also affects 
both the productivityAabor input correlation and the rela-

tive variability of  labor input. If  labor input is measured 
accurately, unsystematic measurement error in productiv-
ity is introduced and the magnitude of  the productivi-
tyAabor input correlation is reduced without affecting  its 
sign. Thus the measured correlation is biased toward zero. 
It follows  that if  the measured correlation is positive, then 
the true correlation will be higher and thereby imply a 
larger value of  than before.  (See Chart 1.) Conversely, 
if  the measured correlation is negative, then the true corre-
lation will be more negative and imply a smaller value of 
<|)* than before.  (Again, see Chart 1.) 

Unsystematic measurement error in output also makes 
the measured relative variability of  labor input smaller 
than the true one, since the measured variability of  output 
is larger. Therefore,  on this account also, it suggests that 
the value of  (j)* may be smaller than before.31  In order to 
go beyond this, I would need some idea of  the likely ex-
tent of  measurement error in output. 

• Systematic 
I will now consider the impact of  taking account of  possi-
ble systematic measurement errors, especially in labor in-
put. It has been observed by proponents of  theories of  la-
bor hoarding (such as in Summers 1986) that labor hoard-
ing leads to systematic measurement errors in labor input, 
which could explain the relevant facts  concerning mea-
sured output, measured labor input, and measured produc-
tivity without any technology shocks. Labor hoarding can 
be captured in a simple way by positing that the variation 
in measured labor input is smaller than that in actual labor 
input. Suppose that due to a systematic measurement error 
of  this type, a 1 percent change in actual labor input trans-
lates into only a X percent change in measured labor in-
put, where X is less than one.32 Now let 

2 9 In  the fixed  coefficients  example, Lucas (1970) takes a to be known and equal 
to unity and uses his theory to show that the labor share 0 can be less than a and that 
the real wage (which equals the labor share) can be procyclical. The alternative con-
sidered here is to treat a (reflecting  the extent of  diminishing returns to capacity utiliza-
tion) as unknown and use the observed value of  0 and an estimated value of  K to cal-
culate a. 

30The 95 percent confidence  interval for  the productivity/labor input correlation 
shows that this correlation is quite possibly negative and may be as low as -0.35. 
Therefore,  measurement error in output implies that the true productivity/labor input 
correlation would be lower than -0.35, that is, even more negative. 

3 1 Compare the values of  (()* in Chart 1 corresponding to p equal to -0.20 and a 
equal to 0.70, 0.85, and 0.94, respectively. However, for  slightly larger values of  p, the 
relation between a and (J)* is not necessarily monotonia For still higher values of  p, <|)* 
is increasing in o. 

32The dynamics of  mismeasurement are being ignored here. In general, the extent 
of  systematic mismeasurement can vary over the cycle and have implications for  the 
dynamic correlations between measured productivity, measured output, and measured 
labor input. This would require looking not only at the contemporaneous correlations, 
as I do, but also at the dynamic correlations. 
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(21) a ' = (% A in total output -r 
% A in actual total labor input)z = 

It follows  from  equations (1) and (21) that 

(22) a = oc'A 

for  0 < A, < 1. As before,  using Assumptions 1 and 2 and 
Fact 4,1 can conclude that a ' must equal the labor share, 
which is 0.64. However, as can be seen from  equation 
(22), the implied value of  a will be higher than this. As 
I demonstrated earlier in the discussion of  monopolistic 
competition, higher values of  a can lower the contribution 
of  technology shocks.33 In order to go beyond this, I 
would need an estimate of  the parameter X. 
Summary 
In this article, I have shown that under the standard as-
sumptions of  competitive markets, no external economies 
of  scale, and no measurement errors, either the contribu-
tion of  technology shocks must be large (at least 78 per-
cent), or the predictions concerning the productivity/labor 
correlation (p) and the variability of  labor input relative to 
output (a) will be incorrect. 

However, the point estimate of  the contribution of  tech-
nology shocks can be lower than 78 percent under alterna-
tive assumptions involving imperfect  competition, external 
economies of  scale, overtime wage premiums, and mea-
surement errors (especially systematic errors in measuring 
labor input) while still resulting in correct predictions for 
p and a. In view of  this point, it follows  that whether the 
contribution of  technology shocks is large or small de-
pends on a number of  empirical questions concerning the 
extent of  imperfect  competition, external economies of 
scale, overtime wage premiums, and measurement errors 
in labor input and output. Consequently, in order to deter-
mine the exact contribution of  technology shocks to ag-
gregate fluctuations,  one would need to have precise quan-
titative measures of  each of  the above factors.  Currently, 
there exist some micro studies at the firm  and household 
level which provide some empirical evidence regarding 
these factors.  More work along these lines, especially with 
regard to accurate measurement of  output and labor input, 
is likely to be very useful  in narrowing the range of  dis-
agreement on the contribution of  technology shocks to 
business cycles. 

33Note that the monopolistic competition theory, the external economies theory, the 
overtime wage premiums theory, the monopsonistic competition theory, and the labor 
hoarding theory of  systematic measurement error in labor input all work in the same 
fashion.  The implications for  the value of  the parameter a (and hence for  the value of 
<j)*) of  these alternative assumptions are the same if  the parameter A, in equation (22) 
equals 1 - (l/t|) in the monopolistic competition theory, 1 - e in the external econ-
omies theory, 1/k in the overtime wage premiums theory, and 1/(1+\|/) in the monop-
sonistic competition theory. 
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