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ABSTRACT

Using optimal control theory and a vector autoregressive repre-
sentation of the relationship between money and interest rates,
one can derive a feedback control procedure which defines the best
possible tradeoff between money supply fluctuations and interest
rate volatility and which could be used to reduce both from their
current levels.

The views expressed herein are those of the author and not neces—
sarily those of the Federal Reserve Bank of Minneapolis or the
Federal Reserve System. ’



The debate over the proper conduct of U.S. monetary
policy has intensified since October 1979 when the Federal Reserve
focused its attention on reducing inflation by controlling the
rate of growth of the money supply. Although most observers have
given the Fed credit for reducing the trend growth of money, many
have criticized it for having increased the short-run variability
of money growth rates and the volatility of interest rates. The
Fed is currently searching for procedures which will guarantee
control over the trend growth of money and at the same time reduce
the short-run fluctuations in both money and interest rates. In
this paper I use optimal control theory and a time series repre-
sentation for money and interest rates to derive a feedback con-
trol procedure which defines the best possible tradeoff between
money supply fluctuations and interest rate volatility and which
could be used to reduce both from their current levels. I first
review the control theory framework, then describe the use of a
time series model to represent the dynamic behavior of the systen,
then present the application to short-run control of the money

supply, and finally address the key issue of structural stability.



OPTIMAL CONTROL THEORY

Optimal control theory is a well-developed set of mathe-

matical tools used primarily by engineers to solve problems in-
volving a dynamical system which responds to exogenous inputs and
is subject to shocks. These tools are used here to generate a
rule for targeting interest rates in order to optimally balance
the competing goals of controlling the supply of money and reduc-
ing the volatility of interest rates.

In its usual form, optimal linear control theory speci-
fies an algorithm for setting one or more inputs in order to
minimize a quadratic loss function. This result, and others cited
below, can be found in standard control theory texts, such as
Kwakernaak and Sivan 1972, Chow 1975, and Kendrick 1981.

The +textbook application of control theory to monetary
policy assumes that the Fed can control either money or interest
rates perfectly. (See, for example, Sargent 1979a, Sargent and
Wallace 1975, and Kalchbrenner and Tinsley 1976.) The usual
guestions at issue are which variable the Fed should control and
how it should set that variable so as to achieve a full employ-
ment, stable price path for the economy.

The standard approach attempts to derive an optimal
monetary policy; it ignores the important tradeoff bhetween the
degree of monetary control and interest rate volatility. I focus
on this narrower issue. I take the money target path as given,
but rather than taking as given the ability of the Fed to hit its
money supply target, I investigate the Fed's short-run problem of

attempting to control the money supply. I assume the Fed is using
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open market operations to try to keep seasonally adjusted ML as
close to a long-run growth path as is feasible, on average. Open
market operations, by increasing or decreasing the supply of
reserves, cause the federal funds rate to go down or up, respec-
tively. These movements in the federal funds rate cause banks and
other economic agents to adjust their portfolios, leading to
predictable movements in the stock of money.

I do not a.f;tempt to model the open market operations
directly. Instead, I focus on the levels of the federal funds
rate which emerge each week and their effects on subsequent move-
ments in money. In the control procedure modeled here, the Fed
receives, at the end of the week, the latest figures for ML (data
for the week ending two weeks earlier) and decides on a new de-
sired level for the funds rate for the following week. Other
procedures and timing relationships can easily be modeled in a
gsimilar way. In fact, I will later discuss the application of
control theory with a funds rate target, a procedure in which the
Fed basically sets its targeted funds rate, and with a reserves
target, a procedure in which the Fed supplies reserves consistent
with a chosen funds rate but does not offset shocks which may
cause significant deviations within a given week.

I assume that the Fed knows the dynamic response pattern
of money and interest rates and uses this kﬁowledge to set the
funds rate so that the money supply will stay near its target
path.‘ In the next section I will address the gquestion of how %o
estimate the necessary response patterns. Because +the money

supply is subject to random disturbances, the best the Fed can do
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is to cause the expeéted value of money to be on target each
week. However, in order to achieve this level of accuracy with
respect to money, the Fed may have to mske large changes in the
funds rate each week. The required changes may easily increase
over time, leading to explosive oscillations in interest rates.
This is the instrument instability problem suggested by Holbrook
(1972). In fact, the Fe? does not try to bring the expected value
of the money supply onto its target path each week. Rather, it
recognizes a short-run tradeoff between reducing expected devi-
ations of money from its target path and reducing fluctuations in
interest rates. (For a recent discussion of this issue, see
Radecki 1982.) 1In order to investigate the nature of that trade-
off, I specify a loss function which has terms penalizing both
money supply deviations from target and volatility of interest
rates. These two objectives are assumed to capture the most
important tradeoff in +the  current Fed operating procedures.
However, the loss function could easily be generalized to include
additional goals. It might be desirable, for example, to avoid
large interventions in the market, in which case one could include
a term representing a cost associated with the size of the control
itself.

Optimal control is most often expressed in the context
of a first-order difference equation in the state vector. TLet x;
be an nxl state vector, ug be the control, and Wy be an nxl vector

of disturbances. The laws of motion of the system are given by

(1) xt= A xt + B ut + Wf
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where A is an nxn matrix and B is an nxl vector. In order to fit
the monetary control problem into this framework, Xy, includes
current and lagged values of Ml, m.; the federal funds rate, rys
possibly other informational variables; and a monetary target, m%t
The Fed-controlled shock to the funds rate is uys The matrix A
includes two or more rows of estimated coefficients which define
how Ml, the funds rate, and possibly other variables evolve
through time. All but one of the other rows of A identify as
their values in the previous state lags of m, r, and possibly
other variables. The final row defines the target money supply
path.

The quadratic loss function is defined‘'to be

@ q
) i E<S£0 BS{(mHs B m:+s)2 wA kzl[<rt+s - rt+s—k)2/k]})°

The cost associated with money deviations from target is bglanced
with interest rate volatility, measured as a weighted sum of
expected squared changes in the federal funds rate over time.
Different relativé costs associated with deviations from the money
target path and interest rate volatility can be represented by
different values of A. More terms in the sum measuring interest
rate volatility--that is, larger values of g--will lead to a
smoother funds rate path. For example, a high A; with q equal to
1, will avoid whipsawing the market--large movements in the funds
rate in a given week--while still allowing significant movements
over a period of time as short as, say, two or three months. A g

of 12, however, will dampen considerably these longer swings as

well, leaving only smooth changes in the funds rate over time.
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This form for the loss function is only one of many
possibilities.s I choose it primarily because of its simplicity;
the higher is g, the more it will respond to-~that is, penalize--
low-frequency variatlons in interest rates. A more sophisticated
loss function in the linear-quadratic class could be constructed
by meking loss proportional +to the square of particular linear
combinations of expected future interest rates, the linear combi-
nations being chosen specifically to respond to certain bands of
frequencies of interest rate movements.

The loss function (2) also includes a discount factor B,
which allows the loss function to give relatively less weight to
future losses than to current losses. For the purposes of this
paper, there is no reason to discount future losses, and the
discount factor is taken to be 1. Although the expected loss is
not finite when the discount factor is 1, there is a well-defined
feedback rule which is the limit as 8 goes to 1 of rules asso-
ciated with B's less than 1 which do generate finite expected
losses. In fact, it may not be particularly desirable to have a
finite expected loss; this requires a discount factor less than 1,
which is myopic in the sense that in a steady state the average
stream of losses will be larger than need be. That occurs because
the feedback rule does not look far enough sahead. For example, if
movements in interest rates affect money with a lag, and if future
losses are heavily discounted, then interest rates are not likely
to be moved in any given period, and the average loss each period
will become very large since money will deviate far from its

target.
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Given the environment described in (1) and the loss
function (2), optimal control theory answers the following ques-
tion: What is the linear feedback rule for choosing uy which, on
the basis of current information, minimizes the expected future

loss? The solution is a feedback matrix, F, and a rule

(3) u, = -F x,_;

which determines u, as a linear function of the past state and is
optimal in the sense that this choice of F generates a smaller
expected loss Jthan any other choice. Specifying different values
of A will lead to different optimal rules. Given these different
rules, calculating the tradeoff between the degree of money con-

trol and interest rate fluctuations is straightforward.



TIME SERIES ANALYSIS

A special problem is encountered when optimal control
theory is applied to economic systems. A key element in the
optimal control framework, knowledge of the laws of motion of the
system, 1is either missing completely or known only with a large
degree of uncertainty. Engineering texts on optimal control spend
little time considering this problem because engineers can usually
do controlled experiments in order to directly measure the re-
sponse functions to whatever degree of accuracy they need. Such
experiments are inipossible in economic systems, though. Instead,
economists have come to rely on the laws of motion embedded in
econometric models.

Unfortunately, econometric models have a rather poor
record as forecasters of the response of the economy to changes in
policy. For example, when a Xkey econometric relationship, the
Phillips curve, was identified in the 1960s, many economists
claimed it could be used as the basis for attempting to trade off
higher inflation for lower unemployment. (See, for example, Tobin
1972.) After a decade of high inflation along with high unemploy-
ment, few would suggest such an approach today. The rational
expectations critique of standard econometric models has provided
a reasonable explanation of why those models failed, and many
economists have developed a cautious, if not skeptical, attitude
toward the use of control theory as a result.

At the same time that this dissatisfaction with tradi-
tional econometric models has been emerging, a number of econo-

mists-~including Christopher Sims, Thomas Sargent, and staff at
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the Federal Reserve Bank of  Minneapolis--have been developing
alternative time series methods of forecasting economic vari-
ables. (Examples are in Sargent and Sims 1977, Anderson 1979,
Sargent 1979b, Sims 1980, and Litterman 1981.) Not all economists
would feel comfortable applying these models to the control frame-~
work, but Sims 1982 has recently made a strong defense of a time
series approach to policy analysis. I take this approach, viewing
Fed policy as essentially the choice of shocks to the interest
rate equation in the context of a vector autoregressive represen-
tation.

I begin by constructing a wvector autoregression with ML,
the federal funds rate, and other variables in order to represent
the laws of motion of the money market. In constructing this
representation, I keep as a primary goal the desire to optimally
forecast the movements of ML. For <this reason I pay particular
attention to a statistic measuring the out-of-sample forecasting
performance of different models. I also follow the Bayesian
procedures suggested by Litterman (1981) for forecasting with
vector autoregressions.

I have searched through a variety of different vari-
ables, looking for those which help to predict weekly movements in
geasonally adjusted ML. The federal funds rate clearly stands out
as the most important. This is followed at a considerable dis-
tance by the level of commercial and industrial loans, Standard
and Poor's index of 500 stocks, nonborrowed reserves, borrowed

reserves, and total reserves. The Business Week index, a com~

posite measure of real activity published by McGraw-Hill, shows no
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count rate do not help either.

with different sets of variables to forecast Ml.
estimated using the same Bayesian prior,

detail below.

Measures of stock market volume and the dis-

These results are based on experiments using systems

Table 1.

Included
variables

Table 1

One-variable systems:

M1

Funds rate

Two-variable systems:

M1
ML
ML
ML
M1
ML
M1
ML

and
and
and
and
and
and
and
and

funds rate

discount rate

commercial & industrial loans
Standard & Poor's index
borrowed reserves

total reserves

Business Week index

New York Stock Exchange volume

Three~variable systems:
Ml, funds rate, and
Commercial & industrial loans
Standard & Poor's index
Borrowed reserves
Nonborrowed reserves
Total reserves
Business Week index

Discount rate
New York Stock Exchange volume

Forecast Performance for ML and the Federal Funds Rate

Al systems are
which is described in

The results of some of these tests are given in

ML Funds rate
prediction prediction
error error
($villion) (basis points)

1.1845

55.309
1.1302 51.9T4
1.1580
1.1656
1.1688
1.1776
1.180k
1.9356
1.2023
1.1129 52.079
1.1149 51.728
1.1230 52.567
1.1247 52.1k4)k
1.1262 51.619
1.1354 52.208
1.1388 50.023
1.141h 51.312

The prediction error in Table 1 is an out-of-sample

statistic.

observation from the sample,

It is based on residuals calculated by dropping each

one at a time, and using the esti-
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mator so obtained to generate the residual for that observation.
The out-of-sample statistic is designed to distinguish variables
which improve the fit only in-sample from those which actually
explain out-of-sample movements. The data are weekly observations
from 1976:1 through 1982:12.

Not only does +the federal funds rate significantly
improve the prediction of M1, but it also explains a dramatically
larger share of the variation of ML at longer horizons than any of
the other wvariables considered. In the sets of three-variable
systems in Table 1, the percentage of the one-year~-ahead forecast
variance explained by innovations in the funds rate varies between
49 and 73 percent. The largest share received by any of the other
variables considered is 10 percent, and in several cases the share
received is less than 1 percent.

For the purpose of short-run monetary control, the
important aspect of the estimated model is the dynamic response of
money +to changes in the federal funds rate. I have found that
response to be much stronger, and more stable across time periods,
than the response of money to any of the other variables con-
sidered. The response to a change in the federal funds rate is
also very insensitive to the addition of other variables into the
money equation. Based on these results, I proceed with a bivari-
ate autoregression using only ML and the federal funds rate. All
of the subsequent analysis could be generalized to include other
variables in the state vector, but the results would probably not

be materially affected.
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The use of a time series representation as the basis for
the dynamical structure of a control exercise is a departure from
the standard econometric approache I have decided not to estimate
a structural model in +this study because doing so would have
greatly increased the cost and complexity of the exercise and it
probably would not have led to improved estimates. In fact, as
stressed by Sims (1980), the usual identifying restrictions of a
structural model are likely to be false, and their application
probably leads to misspecification and therefore bias in the
estimation of the crucial response function. Given the strength
of the evidence in the data, as seen in the lack of sensitivity to
alternative specifications, the results from using a reasonable
structural model would presumably be similar to those I obtain
with a time series representation. However, the risks of biasing
results from imposing false restrictions and inappropriate speci-
fication of dynamic structures appear to outweigh the expected
benefits from a possible reduction in the variance of the esti-
mates. Even if it would not improve the estimates, of course, one
night prefer a structural model if it would be more likely to
remain wvalid in the face of interventions. Unfortunately, con~
struction of such an invariant structural model is an extremely
difficult task. Moreover, the degree of inadequacy of the time
series representation is not obvious. This issue is addressed at

greater length in the last section of this paper.
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IMPROVING SHORT-RUN CONTROL OF THE MONEY SUPPLY

Current Federal Reserve operating procedures do not
include optimal control techniques, even though the Fed appears to
be trying to solve & problem of the type which optimal control
theory is designed to handle. Therefore, the solutions the Fed
obtains by its current procedures may be suboptimal. It is pos-
sible, in fact, to estimate the tradeoff frontier which measures
the obtainable combinations of interest rate volatility and ex-~
pected deviations from monetary targets and, therefore, to measure
the degree to which a change to an optimal control policy would be
likely to improve operating characteristics. The tradeoffs which
emerge suggest that the Fed could achieve a considerable smoothing
of interest rates with little or no loss in terms of money supply
control. There does not, however, appear to be mch room for
reducing the average size of money deviations from target. More~
over, such reductions would require large fluctuations in interest
rates.

In order to understand these tradeoffs, it is first
necessary tq motivate my model of short-run monetary control.
There are some obvious differences between ny earlier discussion
of that model, in which the funds rate is the control, and the
usual discussion of current Fed operating procedures, which
stresses reserves targets. Those differences, however, may be
more apparent than real. Under current Fed policy there is an
implicit role for the funds rate, and that role is the same as the

one it plays in ny optimal control procedure.
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My interpretation of current Fed policy 1is based on the
descriptions of operating procedures published in recent issues of

the Federal Reserve Bank of New York (FRBNY) Quarterly Review and

in the 1981 Federal Reserve Board of Governors staff study, New

Monetary Control Procedures. In these descriptions (Davis 1979,

Davis 1979-80, FRBNY 1981), the causal chain which connects
changes in the nonborrowed reserve path to changes in money hold-
ings is clearly through the level of borrowings, which affects the
federal funds rate and causes banks and the public to make port-
folio decisions which return money holdings to +the desired
level. Whether the focus is directly on the funds rate or on
reserves targets, the fundamental link between open market opera-
tions and their effect on the money supply is through their effect
on the funds rate.

Although there is a good deal of uncertainty over what
causes money to respond to changes in the funds rate, there is
general agreement that an important role is played by banks, which
respond rapidly to changes in the price of reserve credit. In the
first several weeks after a change in the funds rate, it is banks'
decisions to make or refuse commercial loans and to buy or sell
assets which transmit changes in the funds rate to changes in
deposits and money. Banks do not respond directly to the level of
reserves in the system, but rather to the current and expected
future prices for reserves. At the margin, when deciding whether
or not to make a loan, a bank compares the risk-adjusted rate of
return on that loan with its alternative return from supplying

those funds to the federal funds market. If other things don't
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change, when the funds rate‘goes up, for example, the level of
bank loans and deposits, and hence the money supply, will go down.
The Fed has not kept secret the fact that it will occa-
sionally modify the nonborrowed reserves path in order to affect
the speed of adjustment. But any consideration of how mch to
adjust the nonborrowed reserves path mst face the following
issues: What is the effect of a change in borrowings on the funds
rate? What is the response of money to changes in the funds rate,
and at what level should the funds rate be targeted in order to
generate the desired path for money? Thus, unless the Fed does
not care about interest rate volatility, the use of the nonbor-
rowed reserves targeting procedure does not eliminate the need to
solve this optimal control problem. The monetarist policy pre-
scription, which suggests fixing the supply of reserves no matter
what happens to the money supply, in this context, amounts to a
choice of loss function which cares only about hitting money
targets and associates no cost with interest rate fluctuations.
The Federal Open Market Committee {FOMC) and the New
York Trading Desk have long recognized that there is a tradeoff
between the rapidity of reduction of short-run deviations in money
and volatility of interest rates. The Committee has often ex-
pressed concern with "the possibility of whipsawing the markets
and ultimately destabilizing money growth and interest rates.”" In
a recent Fed staff study, Tinsley et al. (1981) found that there
exists "+ « . a well-behaved trade-off between the volatility of
deviations of MLA from long-run targets and the wvolatility of

short-term interest rates under current and alternative operating

procedures that may be exploited by short-run policy."
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The Tinsley et al. study involved simulations of the
Board's monthly money market model. Its conclusions are similar
to those reached here, although their approach differs in that
they did not adopt an explicit control-theoretic framework, nor
did they +try to model the week-to-week dJynamics of the money
market. Pindyck and Roberts (1974) reached a similar conclusion
in an earlier study which used optimal control but did not pena-~
lize interest rate volatility directly.

The optimal control approach to monetary control out-
lined above is an attempt to formalize the Fed's operating pro-
cedures and the implicit loss function which trades off short-run
control for interest rate smoothness. Applying time series tech-~
niques to estimate the dynamics of the Ml, federal funds process
formalizes the Committee's attention to the lags inherent in the
system. The Committee appears to be, in effect, attempting to
solve this same problem; but without the benefit of optimal con-
trol theory and time series analysis, its solution may be sub-~
optimal.

Because of the controversy surrounding the question of
whether the Fed can or should peg interest rates, it is important
to address this issue. What the optimal control procedure pro-
duces is a suggested level for the funds rate at a given point in
time. The level next week will depend on the information observed
this week, In contrast to Pindyck and Roberts (19T4) and other
control schemes which target interest rates in the future, this
proposal includes no target for future interest rates. In the

control scheme described here, if money deviates from its target,
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the funds rate will eventually adjust as much as is necessary to
bring money back to its desired path.

It is only within the shortest time interval——that is,
within a given week--that the funds rate is held fixed, and even
this degree of interest rate control is not necessary. It would
be possible to use the feedback rule defined here under a reserves
targeting procedure that would not be much different from current
procedures. Today, the FOMC picks target ranges for the funds
rate and money growth rates, which the Federal Reserve RBoard and
the Desk translate into reserves path targets. Under an optimal
control approach, the Board and the Desk could compute reserves
targets on a week-by-week basis, targets consistent with the funds
rate given by the feedback rule. As long as the Fed is willing to
cause the federal funds rate to move as needed to control the
money supply, the difference between a funds and a reserves tar-
geting procedure is not sharp.

The time series model that drives the analysis to follow
is a %bivariate autoregressive representation for seasonally-
adjusted ML and the funds rate. Twelve lags of each variable and
a constant term are included in each equation. The model is
estimated using weekly data from 1976:1 through 1982:40. The ML
data is logged and detrended. The estimation procedure is Theil's
(1971) mixed estimation procedure, applied equation by equation--—
that is, ordinary least squares with the data sets augmented to
include a set of observaﬁions representing a Bayesian prior of the

type described by Litterman (1981).
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The estimation is carried out using Doan and Litterman's
(1981) regression analysis of time series program. Using their
notation, the prior is a symmetric random walk with parameter 1.
(Bach variable in each equation is treated symmetrically; the
coefficient on the own first lag has a mean of 1, and all other
coefficients have a mean of 0O.) The lag decay is harmonic with
parameter 2. (The prior for the coefficient on lag j is centered
around 0 with a standard error 1/j2 times the standard error on
the first lag.) The overall tightness is 0.5. (The standard
deviation of the prior‘ distribution for the first lag of the
dependent variable is 0.5.) The prior standard deviations of
variables other than the dependent variable in each equation are
scaled by the standard errors of univariate equations in order to
take account of the different units of the variables. The prior
permits the specification of a loosely parameterized model which
retains good out-of-sample forecasting properties.

The coefficient estimates from this procedure can be
viewed as an approximation of +the posterior mean using this
prior. These estimates are given in Table 2. It is not wvery
enlightening to analyze the autoregressive representation di-
rectly, however, so I also present the moving average, or impulse

response function, representation in Figures la and 1b.
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Table 2
Coefficient Estimates

Table 2a: EQUATION (1) ML
OBSERVATIONS 318

R¥ %2 0.855065

SSR 27.357168

SEE 0.293769

DURBIN-WATSON 1.971286

Label Lag Coefficient Standard error T-Statigtic Significant level
ML 1 .ol366k41 0542227 17.40348 .0000000
2 .0182534 .0634398 28772 .T7735550
3 -.0198099 .0438006 -.45227 6510709
L .0330111 .0285976 1.15433 .2L8364Y
5 -.0024560 .0195830 -.12541 .900194k
6 -.01254%0 0140685 -.89163 3725870
T ~-.00375LT .010521h -.35686 .7211930
8 -.0005963 .0081397 -.07326 L9L1594T
9 -.0015183 0064762 ~.2344L .8146391
10 -.0028283 .0052736 -.53632 .5917345
11 -.0009250 .0043760 -.21138 .8325879
12 -.0005145 .0036869 -.13955 .8890106
Funds rate 1 -.0294392 .0302283 ~+97389 .3301089
2 -.0219705 0362646 —.6058L .5446208
3 0172461 .0234549 .73528 L4621638
L .0139132 .0150226 .92615 3543671
5 .00L5868 .0101752 45078 6521476
6 .0016376 .0072733 .22515 .821855)%
7 .0020154 .0054335 .37093 .T106879
8 .0024023 .0042058 57119 5678693
9 .0022535 .0033489 .67291 .5010028
10 .00076k49 .0027281 .28039 <TT791T7h9
11 .0007203 .0026327 .31826 . 7502875
12 .000543L .0019075 28487 LTT5Th11
Constant .0548648 .0L28758 1.27962 .2006780
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Table2b: EQUATION (2) Funds rate
OBSERVATIONS 318
R*%2 0.988180
SSR 75.916125
SEE 0.489370
DURBIN-WATSON 1.948948
Label Lag Coefficient Standard error T-Statistic Significant level
M1 1 ~.1750059 .0903259 ~-1.937k9 .0526851
2 .503k22L .1056801 4.76364 .0000019
3 ~-.0250717 0729645 ~-.34361 .7311353
L .0162133 .0LT76389 .34033 +7336023
5 ~-.0357166 .0326221 ~1.09485 273578k
6 -.0111387 .0234357 -.47528 6345822
T -.007k525 .0175269 -.k2520 .6706879
8 ~,0041482 .0135594 -.30592 .7596595
9 ~.00Lk69L9 .0107884 -.43518 6634263
10 ~.0045208 0087849 -.51461 .6068227
11 -.0027660 .0072897 -+37943 . T043640
12 -.0019039 .0061k1T7 -.30999 . 7565663
Funds rate 1 1.0718520 .0503554 21.28573 .0000000
2 -.0871561 .0604108 -l.hhoT72 . +1490983
3 ~.0107947 .0390720 -.27627 .782334L
Y .0031161 .0250252 12452 .9009018
5 ~-.0023759 .0169502 -.1h017 .888523L
6 002667k .0121161 «22015 .8257515
7 .0000772 .0090513 .00853 «9931906
8 .00155Lk1 .0070062 .22181 8244562
9 .002010k .0055787 .36037 . 7185675
10 .0011576 .00L54L5 25472 . 7989355
11 .0012712 0037702 .33718 «T359TTT
12 .0011879 0031777 .37383 . 7085268

Constant .1960725 0714239 2.74519 .0060k475



Figures la and 1b

IMPULSE RESPONSE FUNCTIONS

Figure la. RESPONSE TO A 1 PERCENT DEVIATION IN M1
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The state vector for this exercise includes 12 lags of
ML, 12 lags of the federal fﬁnds rate, a constant, and a money

target:

%
X, = (mt’mt—l’ e e oMy 5T T s e e "rt-l2’l’mt)'

The equation of motion is given by

Xt = A xt—l + B ut + Wt

where

ut = <F xt_1

defines the control. The control, ug, is a scalar variable de-
fined as a linear combination of the previous state vector by the
feedback vector F. The vector F is generated by the solution of a
matrix Riccatl equation. B is a vector of zeros with a one as the
13th element, corresponding to the element ry in the state
vector. The vector wi has zeros everywhere except in its 1st and
13th elements, which are white noise error terms with a covariance
matrix equal to the estimated covariance matrix of the residuals

from the post-October 1979 data. This covariance matrix is as

follows:
Table 3
Covariance Matrix of Innovations
ML Funds rate
ML .0860 .0382
Funds rate .0382 .2387

Correlation .2669
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The matrix A is given below:

als1 als2 ve.  glel2 51,13 als2h als25
l. O' o e 0 OO OO O. OI
O. l. LN N ] O. O. O. O.
O. O- LN N * - O. .

a2sl 8252 .. a2s12 22,13 52,2k 0225
O. O. o e 0 Ol l. O. Ol
O' OO LI N 2 O. O. O. O.
O. o. LN ] O. O. O. O.
O' O' LN 2 O. O. O. l.
O. O. LI N o. Ol O. O.

where g is the targeted growth rate of money (on a week-to-week
basis). The at»d are the coefficients from the time series model
described above which determines m. and ry as a function of the
lagged state.

This control model corresponds to a world in which the
Fed at the beginning of the week picks a shock, U, which it does
not modify as the week progresses. The model 1is designed to
similate a reserves targeting procedure in which the level of
nonborrowed reserves to supply during the week is chosen so as to
cause an optimal movement in the funds rate. Because there are
unforeseen shocks during the week, given by Wy, the funds rate has
a stochastic element which is not under the Fed's control.

In order to model a funds rate targeting procedure, the
state vector is augmented to include the next disturbance to the
funds rate equation. The A matrix is augumented by a column which
is zeros except for a one in the 13th row, corresponding to the

funds rate equation. This inclusion allows the feedback rule to

0.
0.
0.

O.
0.
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respond to the disturbance during the week in which it OcCcurss.
Responding to the disturbance is a way to model an operating
procedure in which the funds rate is targeted each week and re-
serves are supplied or demanded by the Fed as necessary to keep
the rate within a narrow band. In this approach, the only differ-
ence between a funds rate targeting procedure and a reserves
targeting procedure is the Fed's ability to respond to the dis-
turbance: under the funds rate procedure the Fed can respond, and
under the reserves procedure it cannot. Thus, using this approach
implies that there will always be more noise under a reserves
targeting procedure. For this reason, I will focus on the control
strategy using the funds rate targeting procedure defined above.

The control problem is solved here using the passive-
learning stochastic control algorithm described by Kendrick (1981)
for use in cases with additive and multiplicative uncertainty.
That is, the feedback control takes into account both the uncer-
tainty due to the additive error term and the uncertainty due to
the fact that the coefficients in the A matrix are not known
exactly. The control is passive in the sense that no attempt is
made to shock the system in order to learn more about the coeffi-
cients. In this application the control solution which does take
account of coefficient uncertainty in the passive sense is very
similar to the solution in which the coefficients are treated as
known. This result suggests that there would be very little gain
available through an active-learning algorithm.

To this point, no mention has been made of the fact that

the money supply is not observed contemporaneously with the funds
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rate. For the purpose of optimal control, there is an important
separation of the problem of setting a control from the problem of
observing the current state. (For a statement of this result, see
Bertsekas 1976.) The implication of this result is that when one
or more of the most recént observations of money are not avail-
able, the optimal strategy is to form the best linear prediction
of these values of money and then to proceed as if they had been
observed.

In practice, depending on the day of the week, the lag
between the observation of the funds rate and ML varies between T
and 12 business days. I model this as a two—week lag in the
weekly data. Thus, I proceed in two steps. First I form the
optimal linear forecast of the most recent two weeks of money
data; then I proceed as above. The forecasting exercise is condi-
tional on the two advanced observations on the funds rate. (The
optimal linear forecasting procedure in this case is described in
Example 13.5 of Doan and Litterman 1981.) The astute reader will
have realized that the conditional forecast depends on the reduced
form, which is a function of the feedback control rule; but the
feedback control rule itself is a function of the conditional
forecast. Thus, with two unobserved values of money in the state
vector, the problem of finding the optimal control rule requires a
simultaneous solution with the problem of generating a conditional
forecast. Actually, the problem is not all that serious. The
method described below has worked quite well with very little

additional computing expense.
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The solution procedure is a simple iteration. The
reduced form in the first step is derived by solving the matrix
Riccati equation for a feedback control vector, F, and plugging it

into the state equation:

(4) = (A-BF) x,_, + w,.

Xy 1 t

~

The conditional forecast of Xy 10 given observations on a sub-

vector of x;_q1, can be written as

(5) X =G x

where G is a matrix which has zeros in the columns corresponding
to the unobserved components of Xy_1+ For a given G, the reduced

form is

(6) xt = (A-BFG) xt-l + Wt .

This reduced form implies a new G, and so on. Note that each
iteration adds two lags to the state vector. Thus, in principle,
the reduced form has an infinite autoregressive representation.
In practice, within the relevant range of A's, iterating between
these two equations quickly leads to convergence of G and the
reduced form transition matrix, (A-BFG). Notice that this itera-
tive procedure does not require repeated solution of the matrix
Riccati equation which determines F. In Figures 2a and 2b, I
illustrate the reduced form responses of money and the funds rate
to a 1 percent innovation in money for two particular values of
A. The response of the funds rate could be viewed as a Fed reac-

tion function under an optimal control approach. Note that there
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is a two-week lag in the response of interest rates to the noney
iﬁnovation. This is due to the delay in the observation of the
money innovation. In Figure 2b, with a larger A, more weight is
given to smoothing interest rates; this causes a smaller interest
rate response and a longer delay in returning money to the target
path.

Once the optimal feedback rule has been calculated,
taking into account the lagged observation of money, the prob-
ability laws of the controlled system are determined so measures
of expected interest rate volatility and money supply deviations
can be calculated. This means calculating the set of points,
associated with different values of A, which represent the best
possible solutions to the problem of minimizing both money supply
deviations and interest rate volatility.

To illustrate this tradeoff, I present estimates of the
minimum obtainable cost combinations in Figure 3. Different rela-
tive weights attached to the goals of money control ahd interest
rate smoothness will lead to different optimal feedback rules and
thus to different points on the graph. Again, by connecting these
points, I trace out the tradeoff curve, or possibility frontier,
from which the Fed can choose optimal procedures.

In order to generate these points, I start with the
vector autoregressive representation, which generates a set of
one~step-ahead forecast errors, or shocks, for the period over
which it is estimated. These shocks are then used in a simulation
exercise to answer the question of how much better could the Fed

have done in the post-October 1979 period, had it been following
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an optimal control policy. First I define a target path for this
period. Since I am focusing on short-run control, I will take as
the target the long-run trend fitted to the logged ML data. For
any particular values of A, I can génerate the paths the state

variables would have taken assuming:

» The state evolved according to the vector autoregressive
representation.
« An optimal control policy had been in force.

« The same set of shocks hit the system.

It should be clear that a tradeoff curve defines a broad
set of possible feeéback rules. Each point on the curve repre-~
sents a feedback rule which is optimal for a particular weighting
of the Fed's goals. Deciding which rule should be chosen from
this set means deciding how relatively important are the goals of
money control and interest rate stability; that is beyond the
scope of this analysis. What this analysis does tell the Fed is
how costly, in terms of interest rate volatility, closer control
of the money supply is (and vice versa).

My estimates of both the tradeoff curve, based on the
data since early October 1979, and the actual costs in this period
are shown in Figure 3. Note that the curve is fairly flat and the
actual is fairly close to it. Together these estimates imply two

main results:

« Short-run money deviations from target cannot be reduced
mich from recent levels without incurring large increases

in interest rate volatility.
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o Short-run interest rate volatility can be reduced quite a
bit from recent levels without reducing the degree of money

control.

Readers familiar with the behavior of money and interest
rates before October 1979 may find an apparent discrepancy between
that behavior and my tradeoff curve. The tradeoff curve implies
that more interest rate volatility is associated with closer
control of the money supply. Since October 1979, however, both
noney deviations from trend and interest rate volatility have
increased. This discrepancy does not refute the existence of the
tradeoff curve. The tradeoff penalizes money deviations from
target, not money growth volatility. The use of a trend growth
rate for money as a basis for computing deviations from target
badly underestimates the true situation before October 1979.
Although there is no exact measure of how close the Fed has come
to hitting its target, all indications are that the Fed has been
closer to 1its desired trend growth path recently than it was
several years ago.

Even given the above qualifications, however, there is
still a large increase in money stock volatility in recent years
which my model does not account for. Some possible explanations
include the increase in financial innovations, such as the nation-
wide introduction of checkable interest-earning accounts in Jan-
uary 1981; the credit controls of spring 1980; the more general
tightening of policy over the whole period; and finally, the fact
that seasonal effects are harder to remove from recent data than

from data around which there are several years of observations.
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In ny analysis, these effects end up as unexplained shocks to
money. Since the tradeoff curve I have estimated is based on
shocks of the size experienced between late 1979 and late 1982, it
does not apply to other periods. Whenever shocks to money are
larger (or smaller), the tradeoff curve for that period will be
higher or (lower) than the one in Figure 3.

The model I used to calculate the tradeoff curve can
also demonstrate how different the weekly history of money and
interest rates might have been if the Fed had chosen an optimal
procedure suggested by my results. TFigures ba and 4b compare the
actual history of ML and the federal funds rate during 1980-82
with what the model suggests could have been accomplished under an
optimal control procedure which weighted stabilizing interest
rates more highly than actual results imply the Fed did. The
comparison suggests that the funds rate could have been smoothed
considerably with little or no adverse effect on money control.
Clearly, though, this particular optimal control solution does not
promise to reduce money deviations from their current Ilevel.
Also, note that, while in this simulation the smoothed interest
rate is usually lower than the actual rate, that will not gener-
ally be true. For example, in a period of falling rates, a

smoothed rate will usually be higher than otherwise.
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EVIDENCE ON STRUCTURAL STABILITY

There 1is no guaran?ee that changes in the operating
procedures of the Fed would leave unaffected the important dynam-
ics of the money market on which this procedure depends. There is
evidence which suggests, however, that the impact would not be
large.

A key assumption of the above exefcise is that the
dynamics of the money market variables would not change too much
as a result of the adoption of an optimal control rule. Whether
or not this is likely to be true is a key question; it is, after
all, the focus of the rational expectations criticism of tradi-
tional econometric exercises of this type. According to the
rational expectations argument, changes in the policy rule of the
government will lead to changes in the actions of agents in the
econony, and the new dynamic behavior of the economy is likely to
be far different from the old behavior. (For a forceful exposi-
tion of this viewpoint, see Lucas 1976.)

At an abstract level, it is impossible to defend a time
series representation against this criticism. The best one can do
is to question, for a particular relagtionship, whether the effects
of a given intervention will be important. Here the relationship
of interest is the response of money holdings to movements in
interest rates, and the intervention is the adoption of an optimal
control strategy. One relevant issue is how stable that relation-
ship has been to similar interventions, if there have been any, in

the past.
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With respect to the money market, we are now in the
fortunate circumstances of having one bit of empirical evidence
which may help resolve this issue. In October 1979 the Federal
Reserve made a change in operating procedures which arguably was a
more striking change than would be the adoption of the optimal
control techniques proposed here. If the dynamics of the system
were not affected too mch by the recent change, then there is
good reason to hope that they would not be too sensitive to the
change proposed here.

Unfortunately, testing for structural change can be a
tricky proposition. For example, it is obvious from the data that
something changed in October 1979. The standard errors of innova-
tions in ML and the funds rate are many times larger after that
date. The gquestion of interest, however, is whether there is
evidence that the response function of ML to a shock in the funds
rate changed. Based on visual inspection of the response func-
tions presented above and a statistical test described here, there
is no reason to believe that the response of money changed signif-
icantly when the Fed changed its operating procedures.

The test is as follows. One-step-ahead forecasts of
money are made separately based on the data before and after the
change. The forecasts are made out-of-sample, in a sense to be
made precise below. If there has been a significant change in
structure, then making forecasts using the full sample should lead
to larger errors in both subsamples. In fact, using 12 lags, the
forecasts of money in the first half of the sample improve only

marginally after dropping the second half, and the forecasts of
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money in the second half improve considerably using estimates
based on the full sample. Using two lags, the forecasts based on
the full sample are better in each subsample than the forecasts
based on the subsample alone.

The out-of-sample nature of the test is that for each
period, the forecast of money for that period is based on an
estimator using all observations in the relevant sample except
that period's observation. The reason for this procedure is that
if the test is done in-sample, then the subsample estimates mst
fit better. One version of the standard Chow test for structural
stability is based on the asymptotic distribution of the size of
this in-sample improvement. (see, for example, Sims 1980.)
Asymptotically, my residuals and test statistic will have the same
distribution. The fact that there is little or no improvement in
the two subsamples means that the change in structure, if it

occurred at all, was not large.

Table 4
Stability Test Results
Prediction error Prediction error
based on subsample based on full sample
Period ($vbillion) ($villion)
Estimated using 2 lags
1976:13 to 1979:40 0.58473 0.57186
1980:1 to 1982:12 1.65326 1.64932
Estimated using 12 lags
1976:13 to 1979:40 0.59865 0.60660

1980:1 to 1982:12 1.73695 1.60863
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These empirical results suggest that the change in money
response would not be large if the Fed were to modify its behavior

by adopting an optimal control strategy.
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CONCLUSION

This application of optimal control theory and +time
series analysis has identified an important tradeoff between
degrees of short-run monetary control and interest rate vola-

tility. Two principal conclusions emerge:

. Application of optimal control theory would likely improve
Federal Reserve operating procedures.

+« Interest rate volatility can be reduced‘considerably from
current levels without adversely affecting the degree of

monetary control achieved.
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