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CHAPTER I
VECTOR AUTOREGRESSIONS

Introduction

Large, simultaneous equation econometric models are routinely used
today for forecasting and policy analysis in both business and government.
Nevertheless, there has existed for many years a persistent current of economic
thought which questions the validity of using these models to project economic
variables. Many economistsl/ feel that the equations in typical econometric
models are formulated primarily by means of spurious economic theory. This paper
presents an alternative methodology for projecting economic time series. The
method is basically statistiecal in nature. The model of the economy which
underlies this work is that of a linear stochastic difference equation, more
commonly referred to in this context as a vector autoregression (VAR).

Each element of a vector of economic variables of interest is regressed
on its own lagged values and the lagged values of every other variable in the
system. The particular techniques described here use Bayesian priors to apply a
consistent set of restrictions for the purpose of minimizing the mean square
error of forecasts.

The vector autoregression specification is very general, It is
capable of modeling arbitrarily well any covariance stationary stochastic proe-
cess. The main weakness of this specification, and the reason it has not been
used extensively in the past for economic forecasting, is that the number of free
parameters increases quadratically with the number of variables in a system, and
for even moderately-sized systems the model becomes highly‘overparameterized

relative to the number of available observations.
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Given quarterly postwar data, for example, a model with five lags and
approximately 20 variables would have close to zero degrees of freedom. Estima-
tion of such a model without restrictions would give a near perfect fit of the
data, but the mean square error of out-of-sample forecasts would be very large.

Several common types of magroeconomic models may be viewed as vector
autoregressions with particular classes of restrictions. The reduced forms of
traditional simultaneous equation econometric models are special cases of vector
autoregressions. Such models are estimated and identified through the imposi-
tion of huge numbers of exclusionary restrictions on structural equations and the
restrictions implied by the categorization of variables into exogenous and
endogenous.

Another common forecasting method, the autoregressive-integrated-
moving~average (ARIMA) models popularized by Box and Jenkins [1970], generate
stochastic processes which, under the usual invertibility assumption, have
autoregressive representations. While such models have theoretical virtues and
are capable of capturing long lag distributions with parsimonious parameteri-
zations, they have several drawbacks. The addition of a moving average, which
differentiates ARIMA models from vector autoregressions, causes a loss of
linearity which makes estimation, statistical inference, interpretation, and
prediction more difficult even in the univariate case, and the difficulties
increase dramatically with multivariate ARIMA models.g/ The univariate ARIMA
models which are commonly used may be viewed as multivariate models which have
severe cross-equation exclusionary restrictions.

The eguilibrium solutions of rational expectations modelsi/ are
another special case of vector autoregressions. Here the assumption of opti-
mizing behavior of agents in the economy generally leads to a set of complicated,

cross-equation restrictions.
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One characteristic the simultaneous equation, ARIMA, and rational
expectations models have in common is that the restrictions are imposed with
complete certainty. In contrast, the procedure suggested here will add informa-
tion in the form of a probability distribution.

It is primarily the recent criticisms of typical large simultaneous
equations models by Lucas, Sargent, and Sims which has motivated this work.
Nevertheless, such criticism is not entirely new. Liu [1960], for example,
suggested that the structures of such models are identified only through the
"omission of relevant variables,™ and that consequently "least-squares-reduced-
form equations are likely to be the best forecasting equations.”

A recent summary of the limitations of large overidentified models is
contained in Sims [forthcoming]l. Sims concludes that, "“claims for identifi-
cation in these models cannot be taken seriously," and that, "a more systematic
approach to imposing restrictions could lead to capture of empirical regulari-
ties which remain hidden to the standard procedures and hence lead to improved
forecasts and policy projections.”

The main thrust of Lucas' [1976] criticism of the large econometric
models, that their structures do not remain invariant with respect to contem-
plated policy changes and that therefore they are not useful for conditional
forecasting, applies equally forcefully teo vector autoregression specifications.
The solution to the problem of constructing models which are policy invariant
seems to be along the lines sketched by ﬁansen and Sargent [forthcomingl. They
summarize the technigues required for the application of restrictions derived
from rational expectationa hypotheses,

On the other hand, for the problem of unconditional forecasting, one
implication of rational expectations theory is that the imposition of exelu-

sionary restrictions on behavioral equations so common in large-scale modeling
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is not justified. The usual method of imposing restrictions seems to be to
assume that no variables enter a particular equation other than those for which
there is a particular economic theory to justify their inclusion. When expec-
tations, which in general are conditioned on the past values of all variables in
the system, enter decision functions, then the opposite assumption would seem to
be more appropriate, that in general it is likely that movements of all variables
affect the behavior of all other variables.

The organization of this thesis i1s as follows: The first chapter gives
a brief survey of the theory and estimation techniques for vector autoregres-
sions. In Chapter II the solution to the problem of overparameterization through
the addition of instrumental information in the form of Bayesian priors is
described. Chapter III considers the problem of making and evaluating fore-
casts. Various uses of the VAR forecasting method are described in Chapter IV,

and the final chapter extends the model to the case of time-varying parameters.



Hepresentation Theory

The statistical model underlying the vector autoregression procedure
is a linear dynamic system with an (nx1) vector of outputs, Y, which is generated
by a stochastic difference equation. The vector Y can include variables thought
to be endogenous or exogenous, and it might include, for example, GNP, invest-
ment, interest rates, pfices, money supply, and employment. Each variable is
treated as a linear function of its own lagged values and lagged values of each
of the other variables plus a random disturbance.

We begin by modeling nondeterministie, zero mean covariance stationary
processes, Later we will relax the assumption of stationarity. A natural
mathematical setting for the discussion of staticnary time series is the Hilbert

space with norm
NY[12 = E[Y'Y] (1)

where B is the expectation operator.
The linear projection operator, P[-]S], on the complete linear space S
2,...,XK] refers to the

projection of ¥ onto the space Xn, the n-dimensional cartesian product space,

is defined by: ||PI¥}s]-Y]| = min }ix-Y{|. PIY[X,,X
Xes

where X is the space spanned by the nk components of X, X X

10 %o eeey Xpo
It is possible to show that linear projections of ¥Y(t) on the spaces
~ spanned by the sets {Y(t—1)}, {Y(t-1),Y(t-2)}, ... converge to a random variable,
say, Q(t).ﬂ’ Letting Eci) = PLY(t)|¥(t-1),...,¥(t-m)] then for any § > 0 there
exists an N(§) such that ||§(t)-§(?)]|2 = E[_§ (Qi(t)-Q?(t))zl < § for all m >
N(8). Define the Y process innovation as e(t):L Y(t) - f(t). Since i(t) is the
projection of Y(t) on {Y(t—1),Y(t-2),...}, e(t) is orthogenal to the space
spanned by past Y's, which also includes all past e€'s. Thus P[e(£)]¥(t-1),

Y(t-2),...,e(t=-1),e(t-2),...1 = 0.
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Thus, the projection based on a finite past can approximate the pro-
Jection based on the infinite past arbitrarily well, Furthermore, since Q(t)
minimizes ||Y¥(t)-Z|] over Z on the space spanned by past Y's, these projections
are optimal linear predictions in the sense of minimizing the error variance.
Now assume Y is generated by an mth-order stochastic difference equation of the

form

Y(t) = D(t) + B1 Y(E=1) +...4+ Bm Y(t-m) + eft) (2)

nx1 nx1 nx 1
nxn nxn °X nx1

where D(t), the deterministic component of Y(t), typieally might include a poly-

nomial in t and seasonal dummies., Under mild regularity conditions the B,'s are

J

uniquely determined by the population orthogonality conditions
E[E'(t)Y(t"j)'] = 0 j:T,Z,..-,m. (3)

The above representation can be written more compactly using lag

operator notation as
(I-B{L))Y(t) = D(t) + e(t)} ()

m . .
with B(L) = z Ble, and L is the lag operator defined by LJ(Y(t)) £ Y(t-j). The
i=1

nondeterministic part of Y is given by
Z(t) = ¥(t) - (I-B(L))™ 'D(t) (5)

Wwhich has the moving average representation

a
Z(t) = [I-B(L)] ™ e(t) = M(L)e(t) = T M.e(t-j) (6)
=0 Y
where each M is an nxn matrix and MO = I. The M's and B's are related by the
matrix Fourier transform relation
- a ] m » -
(I-B,e™" -...- Be T = [ M™Y. (7)

j=0 !
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The autoregressive representation generates a broad class of stochas-
tic processes. According to a theorem of Wold, any stationary stochastic process
can be represented az the sum of a deterministic component and a nondeterministic
component which is representable as a moving average. Thus, all stationary
stochastic processes for which the moving average component is invertible can be
represented as an infinite-order autoregression and approximated arbitrarily
well by finite-order autoregressicns. In addition, a wide elass of nonstationary
series may be represented by an autoregressive model if the first m values of an
mth-order process are taken as predetermined or given a probability
distribution,

The optimal linear projection property of the vector autoregressive
representation for covariance stationary stochastic processes is an important
motivation for the choice of autoregressive estimators in the analysis which
follows. The assumption of stationarity, however, is not needed and is in some
ways inappropriate in this investigation.

One purpose of the stationarity assumption is that it provides a basis
for the limiting behavior of time series estimators as the number of observations
grows. Asymptotie theory is usually relied upon largely because it is the only
theory which is available to describe the properties of these estimators.

In this thesis, however, the focus is an attempt to find complex
multivariate interactions in small samples of data. In applications of the
forecasting procedure to be developed here there are many parameters, the number
of degrees of freedom is small, and large sample theory simply does not apply.
In its place a Bayesian justification will be developed.

Another purpose for assuming stationarity is to restrict the parameter

space. In the univariate, first-order process

T(t) = A¥(t-1) + e(&), (8)
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for example, stationarity is equivalent to the restriction [A] < 1. More
generally, in the mth-order vector autoregression (1), stationarity of the non-
deterministic part is equivalent to the restriction that the roots of the deter-

minantal equation

m m-1
|1z —B1z ——eem Bml = 0 (9)

be less than one in absolute value.

For many economic variables such as the levels of employment, output,
prices, and productivity there is no reason to assume stationarity. Of course,
generally the assumption of stationarity is applied to variables which have been
first transformed by, for example, first differencing, or taking logs and
removing time trends. However, if the motivation for a transformation is simply
to induce stationarity, then the subsequent imposition of stationarity is no
longer a meaningful restriction on the data. 1In any case, as a restriction on
the parameter space, stationarity does not seem to deserve universal application
any more than any other particular restriction derived from economic theory.

Autoregressive representations have been analyzed extensively in the
literature on time series. Recent expositions inelude Anderson {1971], Fuller
[1976], and Hannan [1970]. The form of the autoregression model in (1), with a
deterministic component and roots possibly outside the unit cirecle, is sug-

gested, in a univariate context, in Chapter 8 of Whittle [1963)].



Estimation Theory

In a vector autoregressive system with n variables there are n separate
equations, each of which has the same explanatory variables. In a system with m
lags of each variable and deterministic component D(t),if a function of the {(nxd)

matrix of parameters C, the ith equation has the following scalar form:

i i i i
Yi(t) = d(t) + b11Y1(t—1) + b21Y1(t—2) Foeot bm1Y1(t-m) (10)
+ bl Y (t=1) bl ¥_(t-m)
12 2 +’ll+ mz 2 -IIl
i i
+ b1nYn(t—1) Fouot bmnYn(t-m)
+ ei(t)

th th

where bi above is the k™ element of the 1" row of Bj in matrix notation, and

jk
d%t) is the ith element of the deterministic component.
We now derive the conditional likelihood function. Suppose we have
observations on ¥Y(t), t = -m+1, -m+2, ..., 0, 1, ..., T generated by equation
(1). Let e(t) = u(t) where u(t) is distributed as multivariate normal,

N(0,J y )+ independent in time. The log likelihood for u(t) is
nxn

-_n L . 51
L(u(t)) = - 5 log 21 - 5 log [] [ - Su(t)']7 u(t) (1)
and the joint log likelihood is

Tn T 1 I 1
L{u(t),t=1,...,T) = - 5= log 27 - 5 log |] | ~ 5 } u'(t)J7 u(t). (12)
t=1

When Y(-m+1), ..., Y(0) are taken as fixed, (1) defines a 1-1 transformation of
(1), «.., Y(T) into u(1), ..., u(T) with unit Jacobian. Thus, we can substitute
[(I-B(LMY(£)-D(t)] for u(t) and write the log likelihood for Y(1), ..., Y(T)

given Y(-m+1), ..., Y{(0) as



- 10 -

L(y(t),t=1,...,T[Zu,B(L),C) = - gﬂ log 21 - % log {[u( (13)

mt-a

T
2 [(1-B<L))Y(t>-n(t)]'Z;’[(I-B(L))r(t)-n<t)].

zu will be positive definite at the maximum, so that a condition for L to be

maximized with respect to Zu is. that 3L1 = 0,
Al
Let Y
n%1&.,8(!.),(:) = u(t) = [(I-B(L))}Y¥(t)-D(t)], (18)

then a first-order condition for the maximization of L is given by

T n o
3L _ T 3., 1 ~ i3n
st sl L Fueuent = o (15)
a{;1 2Ly agtd Zes1 151 §=1 J

where 2;1 = [glj]. The square brackets indicate matrices whose i, jth element is

given inside.
T o A
Let S = o E u(tlu(t)', then the above condition implies E = 3, which
nxn Tt‘1 u
is true for any values of BfL) and C. We can then form the concentrated log

likelihood function L* by substituting S for Xu to get

LE(Y(8),t=1, ..., T|B(L),C) = - 22 log 27 - 3 log |S] (16)

1 T~
'é' ZU tyrs” U(t)

In general we minimize log |S| with respeet to B(L) and C in order to
maximize the likelihood funetion. It is a standard result that when the right-
hand-side variables are the same in all equations, as they are in the unre-
stricted VAR which we have in (1), minimization of log |S| is solved by
minimizing the sum of squared residuals in each equation separéteiy.é/ Thus, OLS

estimates equation by equation are maximum likelihood estimates conditioned oan
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the initial observations. More generally, a variety of alternative assumptions
on the properties of the Y's and e¢'s will insure consistency and asymptotic
normality of the least =quares estimates.lf

Under the assumption of stationarity one might want to use the uncon-~
ditional likelihood appreoach which inecludes the observations on ¥Y(t), t = -m+l,
+ssy 0 in the likelihood function. The asymptotic distribution of maximum
likelihood estimator is the same in either case. When only small samples are
available, one might eXxpect the unconditional likelihood approach, which includes
more information, to generate better results.

One case in which the two approaches will be very different is when the
observations appear to be generated by nonstationary processes. In particular,
using conditional maximum likelihoed it is possible to estimate E(L), which would
generate a nonstationary process, whereas this is not posaible with uncondi-
ticonal maximum likelihood., In the latter case, estimates which approach regions
of nonstationarity imply a large variance of the observed process which causes
the likelihood function to explode downward. If one suspects that stationarity
may not be a valid assumption, as we often do here, unconditional maximum likeli-
hood does not make sense, even in small samples,

Another case in which the two methods will differ is when the initial
observations are in a regioﬁ which would be given low probability by the
stationary distribution of the process implied by the conditional maximum like-
lihood estimator. Unconditional maximum likelihood may also be more biased than
conditional, even when the initial observation is likely, if it is nonetheless
fixed. These points are illustrated in monte carlo experiments which follow.
The experiments generate the distributions of the unconditional and conditional
maximum likelihood estimates in a univariate, first-order process under differ-

ent initial conditions and true parameter values.
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In each experiment 30,000 sets of 10 observations for a scalar variable

Y(t), t=1, 2, ..., 10 are generated according to

Y(t) = p¥(t-1) + e(t)  e(t) ~ N(o,1).¥ (17)

In the first three experiments Y(0) is fixed. In experiment 1, p = .999 and Y(0)
= 0; in experiment 2, p = .9 and Y(0) = 0; and in experiment 3, p = .9 and Y(0) =
6.88. In the last two experiments Y(Q)} is drawn randomly from the stationary
distribution of the Y process implied by p, that is, N(O,(1-pz)-1). In experi-
ment 4, p = .999; and in experiment 5, p = .9.

In each of the experiments the unconditional and conditional maximum

. likelihood estimates of p, Py? and Pt respectively, were cobtained for each set

of observations on Y. Following Anderson [1871], Section 6.11, let

2 2 ' 2 2 10
o t§1y (t) Py = Yigy * Y(qoy . Py = t§1Y(t)y(t_1)_ (18)

o
1]

Then

-~

Pe

P1/(PO+Y2(0)) (19)

and oy is the roct less than 1 in absolute value which solves

10 9 > 12 1.1
-1 93 * 17 Py + (37 Py o+ 97 Byloy - Py = 0. (20)

For each experiment we generate the means of the estimators given the N

= 30,090 drawings,

5o(1) | (21)
CREY

18 e -1

Pt % o (1) and P
Py = N.L Py 1/ 2 e T N.
i=1 i

where p (i) and po(i) are the estimates in the i*h drawing, and mean square

errors of the distributions of these estimates

M~

1 (0, (1)=p)°. (22)

N . 5 , N
MSE = ¢ L (o, (1)-p) MSE_ = § |
i=1 i=1

=]



- 13 -

In addition, for each drawing we calculate the unconditional and conditional

maximum likelihood estimates of the error variances,tjﬁ andt}i using

~ 2
~p  Bg2Py0 #(1+00)Pg (23)
Oy = 11
and
~ P'-2P.p +(1+02)P +(02—1)Y2(0)
2 __0“"1Pe ¢’ o Pe (o)
Og = 10
and their means.
~ 1 N . ~ 1 N .
o, * R Z (1) and g, = §. Z {25)

The results of these experiments are given in Table 1. The distributions of Py

and p, are plotted in graphs 1 to 5.2/

The first three experiments illustrate
the fact that even when the true autoregressive process which generates the
cbservations is stationar&, if the initial observations are fixed rather than
drawn from the implied distribution of the process, unconditional maximum like~
lihood estimation in small samples may give very biased results. This bias may
be particularly strong when the fixed initial observations are not likely, given
the stationary distribution of the process. In experiment 3, for example, Y(Q) =
6.88 is an observation three standard deviations from the mean of 0. The
distribution of unconditional maximum likelihood estimates given this initial
observation is badly biased upward due to the small likelihood of such an obser-
vation given a p = .9.

On the other hand, the maximum likelihood estimator may be biased
relative to the conditional likelihood estimator even when the fixed initial
observation is quite likely, as in experiments 1 and 2 where it is equal to 0.,

the mean of the process.
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TABLE 1

.999, ¥(0) = 0

.9,

.9,

-~

%

"

.87

.85

+90

= 6.88

1.23

.887

MSE
u

MSE

MSE
u

MSE

MSE
u

M3SE

"

H

H

.999, Y(0) ~ N(0,(1-p2)" =500

.9,

.978

.886

MSE
u

MSE
¢

It

1]

. 104

.088

.099

.089

0074

.0061

.2})

.0056

0073

~ N0, (1-p2) " N=5.26))

.927

.89y

MSE
u

MSE
e

. Ou?

.056
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When the initial observations are drawn from the stationary distri-
bution of the process, as in experiments 4 and 5, the use of conditional maximum
likelihood is not as efficient as unconditional estimation. Nevertheless, in
these univariate, first-order models, conditional maximum likelihood does not
appear to suffer appreciably from the problem of increased bias relative to the
unconditional estimation,

These univariate results demonstrate some of the reasons for caution
‘when considering the use of unconditional maximum likelihood, but they cannot
illustrate all of the issues raised when the two methods are compared in a
higher-order or multivariate context. In these experiments the only way the
initial observation can be atypiecal is in terms of its absolute size. More
generally, for example, a particular ratio of observations may be unlikely.

In practice, economists do not seem to have strong beliefs that the
usual initial observations in economic time series, typically in the late 1940s
and early 1950s, are necessarily drawn from a stationary distribution corre-
sponding to the process which has generated data since that time. The fact that
economic time series applications often ignore earlier data when it is available
seems to indicate a suspicion that there may have been a significant structural
change in the economy during the preceeding years. This suspicion justifies
conditioning on the initial observations, since it implies a large uncertainty
concerning their distribution and, in particular, whether they were generated by
the process which led to the subsequent observations.

One might wish to specify a prior distribution for the initial obser-
vations representing one's uncertainty more precisely than either the condi-
tional or unconditional maximum likelihood approaches allow. In practice, a
Bayesian approach of this kind will require nonlinear procedures which would
greatly increase the expense of estimation. Because of these considerations, the

conditional likelihood function has been used throughout this investigation,



Experiment 1

Unconditional ML
4. 0
3. 0
2, 0 Conditional ML
1, D
0,0 =
1 I ] [ [




Experiment 2

Unconditional ML

Conditional ML




Experiment 3

25, —
Unconditional ML

20, —

s -~

0.

S ] true p=.9 K,, Conditional ML




70,
E&.
&0.
54,
Sk
4L.
10,

Ia.
5,
200,
15,
B

o

Experiment 4

-
-
] Unconditional ML
pa—

«-Conditional ML
R true p=.99
-~ 4 -2 0. 0 . . 8 s 1.2 I.4

i.B



Experiment 5

Unconditional ML

Conditicnal ML

B i




- 16 -

CHAPTER I1I
RESTRICTIONS IN THE FORM OF PRIORS

Biased Estimation

Autoregressive specifications often lead to multicollinearity problems
and large sampling errors in estimation. This is particularly true in typical
vector specifications which have relatively few degrees of freedom.

Several procedures (Chamberlain and Leamer [1976]) have been devised
to overcome this type of problem. Included in this category are, for example,
ridge regression (Heerl and Kennard [19701) and Stein rule estimators ({Stein
[1974]). These procedures have been justified in the literature on the grouﬁds
that they can generate biased estimators which have smaller mean square errors
than OLS estimates. The use of ridge-type estimators in the'univariate auto-
regressive context has been suggested by Swamy and Rappaport [1975] and is
discussed in the context of distributed lags by Maddala [1977]3.

Each of these mgthods may be éiven a Bayesian interpretation, which
amounts to specifying the prior distribution for which the biased esatimator is
the posterior mean. 1In essence these procedures imply a combination of data
evidence and information supplied by the investigator. The Bayesian interpre-
tation is useful in that it makes explicit the exact content of the information
being added to the data.

In the normal linear model
2
Y=XB+ e e ~ N(0,07), {26)

the standard ridge estimators, for example, are given by

b¥ = (X'X+kI)TTX'Y with k > 0. (27)
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These estimators are posterior means corresponding to prior distributions given
by B ~ N(0,A°I) with k = o2/3°. Each coefficient in the prior is distributed
independently and normally with mean zero and variance inversely proportional to

.1Q/ Here, and throughout this section, 02 and 12 are treated as known.

k

Ridge estimation developed as a procedure for overcoming large
sampling errors associated with multicollinear data. An investigator using
ridge regression attempts to accomplish this, at least implicitly, by adding to
the data the a priori information that the larger the coefficients are in abso-
lute value, the more unreasonable they are. The ridge estimator is sometimes
referred to as a "shrinkage™ estimator because it shrinks coefficient estimates
toward =zero. Following Leamer [1978] we can illustrate the effect of ridge
regression in two dimensions in terms of a graph of the "contract curve" which
balances data evidence against a priori information. Relative to any point not
on this curve, there is a point on the curve which is more compatible with both
the data and the prior distribution. The ridge class of estimators traces out
this curve as k varies, beginning at the OLS estimate for k = O and moving to 0 as
k goes to infinity.

The Stein class of estimators is given by

b = (X"X+kX'X)”'X'Y with k > O. (28)

The implieit prior is of the form 8 ~ N(O,AE(X'X)"T). Stein estimators are also
shrinkage estimators and differ from ridge estimators only in the metric through
which the ahrinkage is applied.

Following Maddala [1977) we can define a generalized ridge estimator

Bag = (X"x+ka” )™ x vaka™ ") (29)
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2

which corresponds to a prior distribution on g of N(B,AZA) with k = g /Aa. The

variance of this estimator is given by UZ(X'X+kA'1)-1.

One example of a generalized ridge estimator for distributed lags is

given by Leamer [1972]. He considers a geometrically decaying response pattern

in the model

Yt = o+ ByX, + By¥eoq * BoXy 5 +eeo (30)
with mean vector defined by

Elol = o,  E[8] =mr'  0<r<i. (31)
The variance matrix is generated by the principle of proportionality

Cov[BiBj] =32£li'j!ri+j“2 0<wg (32)

and Varfg] = Aza.

Thus, for a fourth-~order lag

a a 0 0 0 0
m 0 1 Wr wor? WENE
8 =| mr A=] 0 wr r? w3 wzru . (33)
mr2 0 w2r2 wr3 ru wr5
mr3 0 w3r3 weru wrs r6
» . L -

This prior implies, among other things, that the coefficients on more
distant lags have relatively tight marginal distributions around zero. The prior
distributions we will develop later in this section for the vector autoregressive
model will also have this property.

Shiller's [1973] smoothness prior for distributed lags is another
example of a generalized ridge estimator. The smoothness prior for the mth-order

lag (without constant) is given by
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RdB = w with w ~ N(o,oﬁI) (38)

where the (m-d-1xm) matrix Rd is a matrix of d+1 differences; i.e., for d = 2

1 -3 +3 -1 0 .o 0
Hd = {0 1 =3 43 -1 0 .o 0. (35)

0 0 0 «“e 1 -3 +3 "‘1

Because R'R is not of full rank, Shiller's prior distribution on w does
not translate into a proper prior distribution for 8. In order to represent

prior information in this situation we write the generalized ridge estimator as

égn = (X X+k(R'R)) ™ (X0 YakR T r) (36)

corresponding to implicit prior information given by

REBz=zr+v v ~ N(O,AZI) ' 37

with k = 02/12. The prior distribution for 8 in this case is improper. It is

Justified as an approximation to a proper pridr which combines the information in
(37) with a proper, but locally uniform, prior distribution for linear combina-
tions of B orthogonal to the space spanned by RB. That is, (37) is obtained as
the limit, as T + =, of the proper prior distribution for £ determined by
apecifying a (d+1xm) matrix S, such that

v ~ N(0,\°T)

Q8 = {g) + 11 (372)

w ~ N(0,7%T)
where Q = [g] RS' = 0 and rank [Q] = m. When R'R is invertible, then (36) is

identical to (29) with

8= (R'R)"'R'r and A = (R'R)™'. (38)
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As Sims [1974] suggests, "the whole notion that lag distributions in
econometrics ought to be smooth is . . . at best weakly supported by theory or
evidence.”" Rather than imposing smoothness, the information about coefficient
values which we will combine with the data is derived from the assumption that a
reasonable approximation of the behavior of an economiec variable is a randem walk
around an unknown, deterministic component. Thus, the prior distribution for the
parameters of the ith equation in the vector autoregression is centered around

the specification
Yi(t) = Yi(t-1) + di(t) + ei(t). (39)

The parameters are all assumed to have means of zero except the coefficient on
the first lag of the dependent variavle, which is given a prior mean of one. The
parameters are assumed to be uncorrelated with each other and to have standard
deviations which decrease the further back they are in the lag distributions. In
general, the prior distribution on lag coefficients of the dependent variable is
much looser, that is, has larger standard deviations, than it is on other
variables in the system.ll/

The specification of knowledge about the deterministic component in an

autoregressive model is not generally independent of the specification for other

parameters. For example, in the univariate, first-order model
Y(t) = g + BY(t=-1) + (&) (40}

if we know that Y is a stationary process with méan My, then taking expectations
and solving, we have My = a/(1-8). This nonlinear relationship implies that
independent normal prior distributions on MY and & cannot be transformed into a
multivariate normal prior distribution on « and 8. Of course, even if it were
known that My = o = 0, it would not be possible to represent the stationarity

assumption in a normal prior distribution for S.lg/
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On the other hand, when we do not assume stationarity, My need not
exist, and without observing the data very little will generally be known about
the distribution of the parameters of the deterministic component. In order to
represent this ignorance a noninformative prior, that is, one which gives equal
weight to all possible parameter values, is used. This flat prior is not a
proper probability distribution, but it is the limit of proper distributions with
increasing standard deviations and, thus, generates results which are arbi-
trarily close to those which would be generated with a given set of data by a
proper, but suitably diffuse, prior. For example, with a noninformative prior
distribution on o in (40) and a normal prior distribution with mean of 1 and
variance Ae for B, the improper prior distribution for & and B may be written

2 (8-1)°
pla,BjA") = exp(- 5. (41)
27 ) ;
This prior distribution is the limit if we consider the c¢lass of proper prior

distributions given by

o 2 0 o0
[l ~ ¥.(8,X°8) with 8 = [J], & = [§ ], (42)
and let T go to infinity.
Meore generally, in the model
Y =2 ¥y + X B + u  u-~N0,0I (43)
Tx1 TxK1 K1x1 TxK2 K2x1 Tx1

where we may view Zy as the deterministic component, it can be shown that the

least squares estimate of 8 is given by

g = (X'M2X1-1X'M2Y (B4)

with M2 = (IT-Z(Z’Z)_1Z‘). Since M2 is idempotent, this implies that the least
squares estimate of 8 in (43) may be found by first subtracting out the deter-

ministie components of X and Y, that is, by forming
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R}
1]

M, X

1]

X - 2(2'2) T2'x (45)
and

¥ =MY=Y-2z(22) 2y (46)

2

I

~ -~

the residuals of regressions of X and Y on Z, and then regressing Y on X.

If we consider a class of priors on v and 8 which are of the form
p(y,B) = p (¥)*p, (B) (47)

where pv{y) is multivariate normal with mean zerc and variance VEIK , We can,
1
following Leamer [1978], derive a similar result. The marginal posterior density

funetion of B is given by

f(B1Y) w,ﬁYL(Yls,Y)P(Y,B)dY (48)

u

IYL(YIB,Y)DV(Y)GYD1(B)

L(Y |B)p, (B)

where we use L{Y|B) to represent the marginal likelihood of Y generated by the

process
Y =XB + ¢ Ezu+ ZY (49)

30 that given the prior, P,y on Y, € is normal with mean zero and covariance
matrix (0°L+v2Z2').
Thus,

L) « [(Ppev?zzn)| ™ exp(- ;lE(Y-XB)(ole-vezZ')-T(Y-XB)}- (50)
a
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K
For large v l(UBI +v222')[ behaves as (02)(T‘K1)|Z'Z]v ! and

T
(02T +v222')") = 0721 - 072222 +°—’E 1, 1z" (51)
T - T 2K
approaches the singular matrix G'EME. Thus, the limiting likelihood function is
-1 ~(T-Ky) 1
L(Y|g) « |2'2| o exp (- —5(Y-XBIM, (1-x8) }. (52)

20
With a prior on y of the form given in (47), as v gets large the posterior density
of B approaches that obtained by first subtracting out the deterministic compon-
ents of ¥ and X.

The prior distribution which has been described here is not derived
from a particular economic theory, and in this sense, the information it repre-
sents may be referred to as instrumental. The intuition behind its use is two-
fold. Consider a univariate autoregression. The univariate model requires
specification of a lag length, m. In choosing a larger m, the trade-off is
between the possibility of increasing the explanatory power of the data through
inclusion of further lags and the possibility of decreasing the accuracy of
parameter estimates because of the larger estimation problem. However, this
approach, of specifying a model by the choice of a finite lag length, m, has the
unfortunate property that it embodies the a priori assumption that nothing is
known about the values of the first m coefficients in the lag distribution,
whereas it is known with certainty that all coefficients on lags greater than m
are zero. By specifying a prior distribution with decreasing standard deviations
on coefficients of larger lags, we are, in general, able to estimate more lags
and at the same time are making a more consistent assumption about the distri-
bution of relevant information in the past values of the variable., 4 similar
type of prior information is used in Leamer's [1972] work on distributed lags.

The second point is that when one attempts to model the effects of

other variables in an equation, the standard procedure is to make extensive use
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of exclusicnary restrictions. Coefficientz are added only on variables which a
particular economic theory suggests should have an effect. It is not so much the
particular theories which are used in this way that are objectionable, as the
manner in which they are used. There is rarely an attempt to justify the absence
of variables on the basis of an economic theory, despite the fact that a zero
restriction implies the existence of very certain prior information. On the
other hand, theory is often cited to justify the inclusion of particular
variables, but then in the estimation process the investigator acts as if it is
the coefficients on just those variables about which he is completely ignorant.
When information, whether derived from a particular theory or otherwise, is édded
in terms of zero restrictions, the choice is extreme, to include or to exclude;
there is no middle ground. For this reason, the use of exclusionary restrictions
does not allow the realistic specification of a priori knowledge. Our specifi-
cation, in general, includes eoefficients on all variables in the system at
several lags, but also includes a prior which suggests, with varying degrees of
uncertainty, that those coefficients are close to zero. We are thus able to
allow for a fuller range of interaction among variables and at the same time are
able to specify with greater flexibility how likely we believe it to be that the
interaction does exist. In sum, the justification for this prior is simply that
through its use we are able to express more realistically our state of knowledge
and uncertainty about the structure of the economy, and that in doing so we are
more likely to find the regularities in the data which will lead to better
forecasts.

Probably the two most objectionable aspects of this prior are its
reflection of complete ignorance about the deterministic components and its
prior mean, which reflects a nonstationary process. Both of these specifications

are likely candidates for modification in particular applications. On the other
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hand, these are the areas in which the prior distribution is most uncertain
anyway, and, thus, they are the areas in which the data will most likely dom-
inate. For this reason, forecasting performance will be insensitive to speecifi-
cation of other reascnably loose priors on the deterministic components and means
of other than the one suggested here. It certainly may be true that for the
unemployment rate, or interest rates, for example, a random-walk prior is not
appropriate, and one might do better by specifying a mean of less than one on the
first own lag.

When there are known relationships among wvariables, whether derived
from economic theory or other considerations, that information should be imposed
in the estimation process. As mentioned in the introduction, there are many
economists who feel that the theory which is typically used to identify the
equations of econometric models is not wvalid. With most economic systems, and
particularly when rational expectations mechanisms and dynamic optimization
problems are involved, interactions among variables will be complex and the form
of lag distributions often will be unknown. A primary purpose of this investi-
gation is to determine if, despite the absence of strong a priori beliefs on
restrictions derived from economic theory, one could improve estimates and, in
particular, forecasting performance, by inecluding instrumental information of

the type described above.
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Bavesian Ridge Estimators

In the preceeding section we introduced a general class of ridge esti-
mators corresponding to Bayesian priors. We also described the intuition behind
a particular prior distribution to be used here with vector autoregressions. In
this section we fill in some details of the exact specification of the prior
distribution and develop the formal Bayesian justification for the estimators
used in this study.

To begin with we suggest a parameterization of the prior distribution
which treats all equations symmetrically. First we specify A, a constant stan-
dard deviation on the first lag of the dependent variable in each equation. Then
the standard deviations of further coefficients in the lag distributions can be
decreased in a harmonic manner, according to a parameter Yq- Standard deviations
on cther variables in the system can be made tighter than own lags according to a
parameter Yoo

The standard deviations around coefficients on lags of other than the
dependent variable are not scale invariant. For example, how tight a standargd
deviation of .1 is on lags of GNP in an interest rate equation will depend on
whether GNP is measured in dollars, or in billions of dollars. Thus, in general,
the prior cannot be specified completely withput reference to the data.

This scale problem is usually solved in the standard ridge regression
context by, in effect, scaling the implicit prior by the standard deviations of
the independent variables. This is acecomplished by using transformed data so
that X'X is a correlation matrix. We are led away from the standard approach
because of a difference in our prior information and that implieit in ridge
regression. We suspect that the size of the response of one economic variable to
another is more often a function of the relative sizes of the unexpected move-

ments of the two variables than of their overall standard deviations.
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In results reported here the measure of the unexpected movements is
taken to be the residuals in unrestricted OLS vector autoregressions. For large
systems with few (or no) degrees of freedom, residuals from univariate regres-
sions could be used,

A aspecific example may illustrate the type of problem that can arise
when scaling according to standard deviations of the variables in a VAR context.
Consider again a system which includes GNP and an interest rate. Suppose that in
the data both real GNP and the inflation rate fluctuate around positive means.
Now consider alternative regression equations for nominal versus real GNP. We
expect, a priori, the coefficients on interest rates in both these equations to
be approximately the same size.

Nominal GNP, however, will exhibit a positive trend which over any
significant interval will cause the ratio of standard errors of nominal GNP to
the interest rate to be much greater than the ratio of standard errors of their
residuals in these regressions." Real GNP has no trend, so the ratio of its
atandard error to that of the interest rate will be much closer to the ratio of
their residuals, which will also be about the same as the ratio of residuals in
the system with nominal GNP,

Scaling the standard deviations of our prior distribution by the
relative sizes of residuals in OLS regressions would work for either equation.
Scaling by the relative standard deviations of the variables themselves, how-
ever, would lead to a lower prior on interest rates in the nominal GNP equation
which would misrepresent our prior opinions.

To summarize, our specification of a symmetric prior depends on three
parameters, A, Y11 and Yoo and the following rule. Let 5%j be the standard
deviation of the coefficient on lag % of variable j in equation i, Also, Si is

the standard error of the residuals in the ith equation in the unrestricted QLS

estimation of the system. Then
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Thus, to put the prior in the form
2
RB=r + v v ~ N(Q,A°I) (54)

we make Ri a diagonal matrix with zeros corresponding to deterministic components
and elements [Alafj] corresponding to the zth lag of variable j. ry iz a vector
of zeros and a one corresponding to the first lag of the dependent variable.
Notice that we have been treating the prior distribution for each
equation separately. We will indeed estimate each equation separately. This
treatment is justified when there is no prior because the explanatory variables
are the same in each equation. When we add prior information which is different
for different equations in the system, there could be a gain in efficiency by
estimating all equations together via a seemingly unrelated regression procedure
which uses the information contained in cross-equation covariances.lé/ We do not
attempt such a procedure primarily because of the computational burden: it
requires inversion of an n2m+nd-order matrix, where n is the number of variables,
m the number of lags, and d the number of parameters in the deterministic
component of each equation. The departures from full efficiency will depend on
how far from diazgonal is the covariance matrix of residuals from different
equations and the relative strength of asymmetric prior information to data

evidence.

In the previous section it was c¢laimed that the estimator in (36)

2

corresponded to the prior distribution given in (37} when g~ and AE are known.
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To see this, we begin with the prior (37), which can be written
PB,) « AP exp{- —5(RB,~r,)"(R.B.-r. )} (56)
i 2k2 i“i i i1 "1
- L ]
where p = rank (RiRi)'

In this section we treat each equation separately and let Yi =
' T
(Y.(1),...,¥.(T)) and similarly let X B, + g, represent the stacked right-
1 1 1 1
Txk kx1 T%1

hand side of (10), where k = nm + d is the number of explanatory variables.

Now, the likelihood function can be written

L(Y, 18,00 = o™ exp{- —5(¥,-X8) (¥, ~¥B8 )} (57)

20°

Combining (56) and (57) according to Bayes law, and dropping the i

subscript, we obtain the posterior density function:

P{B|Y,0) « A"Po™? exp{- ;izﬁ} (58)
where

M = [(RB-r) "(RB~r)+(Y-XB) ' (Y-XB)) (59)
and

ﬁ:% F=§m (60)
Let

X' = (KR Y= (1FY) (61)

8= wE® T rED = 07X (62)
and

7= (§-%B). (63)
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It can easily be shown that
= (ULU +(B-B }'(X'X)(B-B_)1. (64)

It is apparent that the posterior density function for B is a k-

dimensional multivariate normal with mean B and covariance matrix 02(§,§)-1. Bm
is equal to BGR given in (36) with k = ¢ /k .

Of course, we will rarely know 02, and we begin again with (56), add a
diffuse prior on g, Plg) = %, as suggested in Zellmer [1971), and taking ) as
given we have the prior demnsity function

P(8,5) = ¢~ A"P exp|- ;iE(RB—P)'(RB-r)}. (65)

Proceeding as above we derive the joint posterior density

1 1 ‘\‘I\ Ll N'-d ~
P(8,0/¥) = e exp{- S 51050, (BB X(B-8 )1} (66)

exp{- ———U'U } -

R g T N DA R S ) 67)
P x| o 20 o
ewl- L)

g 2 erey=1
= n—p+1|x.xl1/2 N(Bm’o (X*X) ). (68)

The conditional distribution for B8 given ¢ is normal., Thus, to find

the mode of the posterior density functien we maximize

P(8,(0),0) = exp{- ~L50001 } (69)

0n-e-‘l 20
which is derived by substituting Bm for § in (66) above.
For many purposes we might want to minimize a quadratic loss function

in B. In this case we calculate the posterior mean of B.
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E(8) = IBBP(B)dB (70}

where P(B)} is the marginal posterior density of B found by integrating out o.
This funetion, a normal -t,lﬂ/ is difficult to evaluate directly, and the above
numerical integration is not feasible.

We note that by changing the order of integration we can show that this

posterior mean is a weighted average of the B_'s treated as a function of g. The
m

weights are given by the marginal posterior density of ¢

exp{_ -_LGIAm}

2 1
20
P(o) = —ar . (71)
Un-p—ilx,xl1/2
We have
E(8) = [48L[P(6,0)dol a8 (72)

= fngBP(BIU)P(U)dBdU
= fUP(o)[fBBP(BIU)dB]dO
= J‘UP(G)ém(U)dd.

Computation of gm(d) and P{g) are too time consuming to allow evalua-
tion of this integral by standard numerical integration techniques. I have
attempted t6 approximate this expectation by taking a weighted average of gm's
with weights proportional to the corresponding P(g)'s. These approximations are
expensive, however, and generally are similar to the mean of the normal approxi-
mation of this posterior distribution suggested by Zellner [1971}, Section 4.2.

That normal approximation has mean Bm(c) and variance matrix 8.2(3&!%)"1 where 8.,

the estimated standard error of the OLS regression, is substituted for ¢ in the

definition of X.
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Unless otherwise noted, this estimator, Bm(c), is the estimator which
is used in this study. It is also the mixed estimator developed by Theil [1963]
when the information in (37) is treated as a second sample, independent of the

original data.
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CHAPTER III
FORECASTING WITH VECTOR AUTOREGRESSIONS

The Bayesian justification of the estimators of the preceeding chap-
ter, because it remains valid for any prior distribution, does not reflect on
whether such estimators have value in forecasting economie time series. The
latter guestion is an empirical one and is the subject matter of this chapter.
The formula for prediction with vector autoregressions is given first, This is
followed by a description of the statistics which are used to compare forecast
performance. The third section provides a digression on the validity of genera-
ting performance comparisons on the basis of seasonally adjusted data. The
fourth section proposes an improvement on a forecast evaluation procedure
suggested by Fair [forthcoming]. Finally, a method is suggested for specifying
priors in larger systems in which symmetric treatment of variables seems
inappropriate. The forecasting performance of a system of this type is compared
with the comﬁiled performances of several forecasters along with univariate

autoregressions and ARIMA models,
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Projections

- Projections using the coefficient estimates of the autoregressive
representation are made according to Wold's "chain rule of forecasting."
Let PtY(t+k} be the projection of Y(t+k} made on the basis of infor-
mation available at time t. For sake of exposition consider a simplified version
L ~
of (1) in which Y, = BOD(t) + z BlY(t—i) + e(t). Substituting estimates Bi for
2=1
Bi and taking expectations at time t of Y(t+1) we have
~ L A
P Y(t+1) = B.D(t+1) + ) B, Y(t+1-L) (73)
t 0 221 %
which 1s well defined, since everything on the right-hand side is available at
time t.
To find P Y(t+k) we project both sides of
L
Y(t+k) = BD(t+k) + J By¥(tek-2) + e(tek) | (74)
2=1
on information available at time t and substitute Bi for Bi to get
~ k""‘14\ L A
P.Y(t+k) = B, D(t+k) + J B,P Y(tek-L) + ) B,Y(t+k-2). (75}
£ 0 Lt 2
2=1 R=k
This formula determines a recursive projection procedure, Wold's chain
rule, which generates forecasts indefinitely far into the future.

Another procedure for generating a k-step forecast, PtY(t+k), is to

estimate the regression equation

L
Y(t+k) = AD(t+k) + ] A Y(t-g), t=1, T. (76)

=1

In this equation Y(t+k) is projected directly on information available

L A
at time t. One uses P Y(t+k) = A4,D(t+k) + X1A£Y(T-l) as the forecast,
2=
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If the true coefficients in both projection formulas were known, the
forecasts would be the same. This second procedure, however, does not generate

recursive projections and therefore is not useful for generating sample paths.
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Performance Statistics |

All statistical forecasting models of economic series involve a high

]
degree of oversimplification and approximation. Thus, it is useful to have an

empirieal procedure to éheck how reasonable are the forecasts generated by a
model and how they compa;e with those of other models.

A natural proéedure to test a forecasting model is to generate a
sequence of coefficient %stimates and their forecasts and produce sample per-
formance statistics such as the bias, mean absolute error, and mean square error
of those forecasts,

The procedure for generating the forecast performance statisties
reported here is the folloéing. First, a set of data with observations t=1, ...,
T is divided into an estimation period, t=1, ..., T0 followed by a projection
period, t:TQ+1, eeey Ta Néxt a model is specified. The model may be a veetor
autoregression which requires specification of the variables, lag length, and
possibly a prior distribution on the coefficients, or it may be any other well-
defined forecasting procedure such as an ARIMA model with specified orders.li/

The coefficients of the model are estimated using the data in the
estimation period. A sequence of forecasts of the next m values of Y is
generated by using the chain rule. The coeffiicients are then reestimated using
an additional observation, that is, adding Y(TO+1) to the sample, and a new set
of m forecasts is generated. This procedure of reestimating coefficients and
forecasting is repeated for each observation in the projection period. The
computations required for this technique are not intractable even with large
vector autoregressive meodels, including those derived as approximations to
posterior means, because updating the coefficient estimates each period does not
require reapplication of OLS to larger and larger data sets. The equivalent

sequence of linear least squares estimates may be generated by use of the Kalman

filter, a recursive algorithm described later in this paper.
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The forecast errors generated during the projection period are used to
form performance statistics for the model. A list of definitionas of some com-
monly used sample statistics is given below.

The statistics are defined in terms of the k-step-ahead forecast made
at time t, Pt(t+k); and the actual value at time t, A(t). Let Tk be the szet of
t's in the projection period for which the k-step-ahead forecast errors are

16/

known,— Lk be the number of elementz in Tk’ and N be the frequency of the data

per year, i.e., four for quarterly, twelve for monthly.

Mean Error

k-Steps Ahead z [} P (tak)~A(L+)I /L (77)
teTk
Mean Percent Error = [Pt{t+k)-A(t*k)]‘100,/L (78)
k-Steps Ahead T A(t+k) S
ET%
Mean Percent Growth [Pt(t+k)—A(t+k)]-100-N
Error (in annual = NG /L, (79
terms) k-Steps Ahead teT,
Mean Absolute Error _
k-Steps Ahead = [tz [Py (t+i) =Bk} |1 /L, (80)
ETk
Mean Abzolute Percent = [ Z [Pt(t+k)—A(t+k)]-1001|/L (81)
Error k-Steps Ahead T A(t+k) TR
eTk
Mean Absolute Percent [Pt(t+k)-A(t+k)]-100'N
Growth Error (in annual = [ E TOn []/Lk (82)
terms) k-Steps Ahead teTk
Root Mean Square 2 1/2
= - /L
Error k-Steps Ahead = [(tér [P (t+k)-ACt+k)]T)/L,] (83)
k
§ [Pt(t+k)-A(t+k)]2
Theil's U Statistic  _ [thk 1/2
k-Steps Ahead = ] (84)

) (ACt)-A(t+k)]2
teTk
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For illustrative purposes an example of the performance statistics for an eight-
lag vector autoregression model estimated using OLS is shown here. Quarterly

observations of real GNP, M1, and the GNP price deflator were used beginning in

195”"1 .Jl/

The projection period is 1970-1 through 1978-1.

The units of the

variables are billions of 1972 dollars, billions of current dollars, and 1972 =

100, respectively.

Steps

Ahead Eg Real GNP Meney Prices

Mean Error 1 32 .682862 -.282718 066854
2 31 3.558448 -, 48934y 005614

3 30 6.654699 -.754810 -.267618

4 29 8.300401 ~-1.038095 ~. 431948

Mean Percent Error 1 32 .060892 -. 125927 .057011
2 31 .381168 -.252625 055021

3 30 .T82653 -.315313 ~.056337

y 29 .919827 -.591788 -.093193

Mean PCT Growth Error 1 32 .203119 ~-.517532 .219291
3 30 919112 -.598251 -. 121751

y 29 .791110 -.655932 -. 163796

Mean ABS Error 1 32 8.655970 1.154115 .668666
2 31 14, 156463 2.501070 1.4170948

3 30 24.076290 §,245739 2.145536

y 29 37.092176 6.787852 3.275013

Mean ABS Percent Error 1 32 1.108620 467390 .426903
2 31 1.780782 1.020501 .898786

3 30 3.012092 1.703680 1.369456

b 29 k.625275 2.677226 2.067312

Mean ABS PCT Growth Error 1 32 §,.4539494 1.898055 1.736071
2 31 3.583295 2.105232 1.859973

3 30 I,0655892 2.381728 t.922407

b 29 4,687835 2.851695 2.212934

Root Mean Square Error 1 32 10.965852 1.469385 .B28557
2 31 17.737345 3.075096 1.657500

3 30 27.868638 5.208654 2.523325

i 29 13,352891 7.679900 3.727461

Theils U 1 32 921579 .381233 .295304
2 31 LB24734 LA03743 295751

3 30 .915069 LA52651 301145

[} 29 1.106923 496577 .340006
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One use of these performance statistics is to compare the forecasting
ability of vector autoregressions with other popular models. Figure 2 shows such
a comparison on the basis of Theil U statisties. The particular autoregressive
specification shown was not the result of an extensive search for the best
variables, lag lengths, prior parameters, and so on. It was, in fact, the first
specification attempted for this comparison. A more complete comparison of
McNee's results with those of a 15-variable VAR is given later in this chapter.

The forecast performance statistics suggested in this section, how-
ever, are most useful when they form the basis for comparing different models on
the same data set. Comparison with real-time forecasters, such as is made in
Figure 2, must be viewed with caution because real-time forecasts are necessarily
based on a different information set than that which forms the basis of the data
available in current economic time series.

The actual numbers in most economic time series change over time for
two reasons which may tend to improve their predictability. The first reason is
that revisions in the data are regularly made as more information becomes avail-
able. The second reason is that seasonal adjustment procedures use future as
well as past values of not seasonrally adjusted data, and therefore change as more
information becomes available. This later problem is shown in the following
section to be not very significant in one application.

Forecasters operating in real time, on the other hand, may gain a
significant short-run advantage by using not only quarterly data, but also
monthly and weekly data which may be available. Also, because they are made
Judgmentally, these forecasts take into account a much wider information set
including short-range factors such as weather and strikes. It seems likely that
these differences become leas important for forecast horizons of several or more

quarters.
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Figure 3

Theil U statistics for a three-variable eight-lag system illustrate the typical pattern of
forecasting performance as tighter priors (smaller values of A) are placed on the
autoregressive specification. Farecasts generally improve (smaller Theil U statistics are
better) and then worsen as prior tightness increases. Earlier projection petiods, which
are based on tewer abservations, and longer torecast horizons generally require tighter
priors. The system shown here has a prior with y, = .8, y; = 1.0, and A as indicated.

Prior Tightness (values of A)

no
prior 1.0 5 A -.05 01

1.0

—

[

I N N Y W
8 2 4 6 8

Feraragt Horizon in Ohiartere

Forecast Periods
196311 ~1967:4 comemmeman
1968:1-1972:4 .sseassees
1973:1 18774 v

1.0



Figure 4

Changes in forecast performance as a function of movement from a univariate
to multivariate specifications are shown on these graphs generated by a
monthly model which has the variables M1, pricers, personal Lncome, and the
prime rate on 4« to 6-month commercial paper. Each equation includes 6 lags
of each variable and a2 constant. Shown are the ratio to univartate of mean
square errors of Y-month horlzon forecasts from specifications varying prior
parameter y The values of the other prior parameters are A = .2 and

Y, = 9, re?lecting relatively diffuse information about own-lag coeffi-
cients.
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Forecast performance statisties are relatively insensitive to changes
in the parameters of the prior over a wide range of values, as can be seen in
Figure 3. Here a comparison of Theil U statistics is made over the entire range
of A, the standard error in the prior of the coefficient on the first lag of the
dependent variable. This parameter, which represents the ratio of uncertainty in
the prior to uncertainty in the data, controls the tightness of the prior. The
graphs shown in Figure 3 demonstrate consistent improvement in forecasting per-
formance with the imposition of the prior for the three variables in the system
over three different projection periods, The largest gains are generated for the
earliest projection period, 1963-1 through 1967-4, and for the forecasts with the
longest horizon.

The result that unrestricted QLS systems can be readily improved upon
by the imposition of a prior in multivariate auteoregressive specifications is of
interest, particularly in reasonably sized systems such as was used to generate
Figure 3. In general, however, it is a rather weak result, since one could
always add variables to a system until the unrestricted model would be so highly
overparameterized that it would perform very poorly. A perhaps more interesting
comparison iz between the multivariate systems and a univariate autoregression.
Such a comparison is made in Figure 4, in which the percentage change of root
mean square errors of four-month horizon forecasts are graphed as the specifi-
cation moves from univariate to multivariate. The movement is accomplished by
adjusting the parameter Yo in the prior which controls the relative tightness on
other versus own lags;

While the overall results are mixed, at least for prices consistent
improvement in forecasts is apparent as other variables enter the system. Such a
result indicates the existence of a causal relation in the Granger "predict-

ability" =sense running from at least one of the other variables to prices.
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The Problem of Seasonal Adjustmentlg/

Economic forecasts are almost always made in terms of seasonally
adjusted data. A problem arises, however, when forecast performance statistics
generated according to the method of the previous section using seasonally
ad justed data are compared to compiled statisties on forecast errors generated by
forecasters operating to real time. Seasonally adjusted economic time series are
generated by a two-sided filtering of raw (not seasonally adjusted) data. They
are thus based on more information than is available when each value of the
Seasonally adjusted series first becomes available. The current observation
necessarily depends on a seasonal adjustment procedure which uses, at most,
current and past. values of the raw data.

The purpose of this section is to show that the advantage obtained by
using a seasonally adjusted data series is not significant. This is accomplished
for a particular example with a strong seasonal by demonstrating a one-sided
seasonal adjustment procedure which, when applied to raw data, leads to forecasts
of the two-sided seascnally adjusted series with only slightly larger mean square
error than those generated by using the past values of the series itself.

The results in this section were motivated by an attempt to compare the
forecast errors of two-month growth rates of M! generated by a vector autore-
gression with the compiled errors of the Federal Reszerve Board.lg/ The standard
procedure for obtaining a "final" seasonally adjusted M1 series requires the
application of a two-sided filter to the raw data. Letting the two-sided ses-
sonally adjusted data be MTS, the unadjusted data he M1N, then a two-sided filter

is represented by

M1S(t) = F[M1N(t-k),M1N(t-k+1),...,M1N(t),...,M1N(t+k)]. {85)

Thus, future, as well as past, values of the unadjusted M1N series are required

for =ome length, k, depending on the filter,
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The forecast performance statisties 1in this paper are based on
currently available seasonally adjusted data. A forecaster operating in real
time, however, faces a different, more difficult forecasting problem. At the
time of the forecast, t, the forecaster does not know the final seasonally
adjusted numbers for the last k pericds, and he must first estimate MTS(t-s),
s=0, 1, ..., k, based on M1N(t-s), s=0, 1, ..., and then project future values of
M1S. I refer to the estimation of M1S(t-s), 3=0, %, ..., k, on the basis of
M1y(t-s), 820, 1, ..., as one-sided seasonal adjustment, and let Mlz(t-s), 8=0,
1, «+., be the estimates, Notice that for s > k, M1:(t-s) = M1 (t-s). Several
methods have been suggested to accomplish this one-sided seascnal adjustment. I
use the procedure suggested by Geweke [1978} which has the property of minimizing
expected subsequent revision in the seasonal factors for wide sense stationary
series whose autocovariance function is known.

In theory one could face the problem of generating comparisons with
real-time forecasters by starting with unadjusted data and incorporating a one-
sided seasonal adjustment procedure explieitly inte the estimation process at
each point in time during the projection period. I have not done this because of
the large computing expense which would be involved. Not only would there be the
cost of seasonal adjustment each period, but more importantly, because the data
series themselves change, use of the Kalman filter updating algorithm would no
longer be possible and a set of matrix inversions would, thus, have to be
performed each period to form the desired projections.

Rather than use this costly procedure throughout, I have followed it
here in a univariate system as an experiment in order fo estimate the magnitude
of the difference between using two-sided and one-sided seascnally adjusted

data.
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The two-sided seasonal adjustment procedure used here is a simplified
version of the multiplicative, ratio-to-moving average method used in the U.S.
Department of Commerce Census X-11 program as described in Shiskin, Young, and
Musgrave [1967]. Given the entire MTN series, the seasonally adjusted series,
M1s' is formed as follows:
The first step 1is the calculation of M1c, a centered 23-term
symmetric moving average of M1N.
11
MTc(t) = SZ_”a(a)mN(t-s). (86)
The a's have the weights, 148, .138, .122, .097, .068, .039, .013,
-.005, -.015, -.016, -.011, -.004, for s=0, =+1, *2, ..., +11,
reapectively.
The second step is the caleculation of S-I (seasonai-irregular)
ratios, formed by dividing M1N by M1c.
M1y(t)
3-I(¢) = TIROIR (87)
¢
The third step is the calculation of seascnal factors, 3(t), as a
moving average of the S-I ratios individually for each month.
+3
S(t) = 7 b(k)S-I(t-(k+12)). (88)
k=-3
The b's have the weights .200, ,200, .133, .067 for K=0, +1, +2, +3,
respectively.
Finally, the seasonally adjusted series, Mls, is equal to M1

N
divided by the seasonal factors.

M1S(F) = M1N(t)/S(t). (89)
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It can be seen that this procedure requires values of the unadjusted
series 47 steps ahead and previous to each period in order to calculate the
seasonally adjusted value, Geweke notes that if we take the procedure in (86)-
(89) as given, then the problem of minimizing subsequent revision in the seasonal
factors of recent data is solved by optimally forecasting the not seasonally
adjusted data,

First, it should be noted that this mechanical procedure, when applied
to not seasonally adjusted M1 data, produces a series which closely approximates
the published seasonally adjusted M1 series, M1-SA, A comparison of the two
during the projectidn period 1972-2 through 1977-11, along with the unadjusted
data, is given in Figure 5. The series labeled "Filtered M1-NSA" is generated
using the above method and is based on unadjusted data available through 1978-11
and projections of M1N beyond that date. Shown are deviations from constant and
trend of the logarithms of each of the three series,

Given the two-sided seasonal adjustment procedure defined above, a
one-sided adjustment procedure 1s defined by a specification of a method for
projecting not seasonally adjusted data. The method followed here is suggested
by Geweke. The regression of M1N on its first 7 and 12 through 20 lags is formed,

and M1N is projected ahead using the chain rule. With these values for M1, the

N

above two-sided adjustment procedure is applied to generate M1g(t—s), 3=0,
1, enee

The above techniques allow one to generate two series of growth rates
of aeasonally adjusted M1 ag follows:

1-S NSA(t) = 600[M1;(t)-m:(t-2)]/m;(t-z), that is, the two-month

growth rates of seascnally adjusted M? which become available month by

month through the use of the one-sided seasonal adjustment procedure;

and



Figure 5

This graph compares the seasonally adjusted M, series generated by
the two-sided seasonal filter defined in the text (Filtered M1-NSA)
with the published seasonally adjusted series (M1-SA) and not
seasonally adjusted series (M1-NSA). All three are shown as devia-
tions from constant and trend of logarithms of the data.
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2'-s NSA(t) = 600 [MTs(t)-ms(t-Z)]/M1s(t-2), the two-month growth rates
of M1s’ the series generated by the two-zided seasonal adjustment
procedure applied to the entire not seasonally adjusted M1 series.
In Figure & these two series are plotted along with "3SA," the growth rates
implied by the final published seascnally adjusted M1 data. The series "1-5 NSA"
closely approximates both "2-35 NSA'™ and "SA."

Now define "real-time forecasting" as the technique of forecasting
future values of M1s based on M1§, that is, of reestimating. M1:(t-s), s=0, 1,
+esy ON the basis of M1N(t-s), s=0, 1, ..., each period and using those estimates
to project M1s(t+1), M1s(t+2), eees 1 have calculated error statistics com-
paring the forecasts of growth rates of M1s generated by this method with those
generated by projecting M1S on itself.

These experiments show that there is only a rather small advantage
gained by using the final seasonally adjusted numbers throughout rather than the
real-time forecasting method. The one-step projections by a univariate sixth-
order autoregression of two-month growth rates of "3A"™ generate a root mean
square error of 2.28 on the projection period. The corresponding error statistic
using M1s to forecast growth rates of M1s is 2.34., The root mean square error of
forecasts using the real-time forecasting method to forecast growth rates of M1s,
is 2.43. Thus, a procedure of real-time forecasting exists, which, in the
univariate case, generates errors only slightly larger than the method of pro-

Jeeting final seasconally adjusted data.



Figure &

A comparison of the growth rates of three seasonally adjusted M,
series shows that applying the one-sided and two-sided adjustment
procedures defined in the text to not seasonally adjusted data gener-
ates series with growth rates very close to those of the published
seasonally adjusted data.
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Forecast Evaluation

Fair [1978b] has proposed a new method of evaluating the forecasting
performances of different econometric models. This section extends that method
by considering several alternative ways of estimating the total uncertainty of a
model. It also applies the method to evaluate the effects of applying a Bayesian
prior in the estimation of a vector autoregression.

Most studiesgg/ have relied upon the calculation of the root mean
square error, BM3E, of ex post forecasts, or a scaled version known as the Theil
U coefficient. Fair's method uses the ex post forecast errors, but adjusts the
RMSE to account for changes in the variance of forecasts over time. Fair [1978c]
has presented the résults of applying his method to four macrceconomic models
including Sims' {1377] six-variable, unconstrained vector autoregression. Here
an examination is made of application of the method to the same VAR model and one
with the addition of a Bayesian prior distribution,

Since the details of Fair's method are rather involved and fully
described in [1978b], they will be only briefly discussed here. The method
partitions forecast uncertainty into four sources: (1) error terms, (2) coeffi-
cient estimates, (3) exogenous variable forecasts, and (4) misspecificationgl/
of the model, Estimates of uncertainty due to error terms and coefficient
estimates are calculated at a given time by stochastic simulation. In the VAR
models there is no uncertainty from exogenous variables.

Uncertainty from misspecification of the model is estimated by a
comparison of the variances computed by stochastic simulation with estimated
variances computed from post-sample forecast errors. Fair's procedure relies on
an assumption of constancy forAthe degree of misspecification of the model,

Several alternative assumptions will be considered here.
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There are two other minor wmodifications which were made in Fair's
procedure for this study.gg/ The first is that the estimator of the covariance
matrix of residuals has been corrected for degrees of freedom. This correction
is particularly important in highly parameterized models such as the uncon-
strained VAR, and as will be shown, failure to include it biases Fair's results
towards a higher degree of misspecification for these models.

Also, the one-quarter lag which Fair places between his estimation
period and the projection period has been dropped. In this respect Fair's
procedure mimices the behavior of large econometric modelers who, because of cost
considerations, do not reestimate their models on the basis of preliminary data.
There would seem to be no reason not to reestimate a linear model on the basis of
preliminary data.

The purpose of generating stochastic simulations is to estimate the
first two moments of the distributions of forecasts. Note that the mean of a
forecast distribution is in general not given by the common procedure of plugging
in zero errors as is true of linear projections. Even though the VAR models
generate linear one-step-ahead forecasts, the k-step forecast for k > 2 is a
nonlinear function of the parameters. On the other hand, the results in Table 2
of this section support the coneclusion of Fair and others that the bias in
forecasts generated by the zero error method is relatively small.

The first step in Fair's procedure is to generate error simulations to
estimate the mean and variance of forecasts holding the estimated coefficients
constant and picking normally distributed random errors with a covariance matrix
equal to the sample covariance matrix of the residuals. The standard deviations
of these distributions are the error term uncertainties. There is a different
error term uncertainty calculated each period for each variable and forecast

horizon. The second step is to generate coefficient simulations in which, in



- 48 -

addition to random errors, coefficients are picked randomly according to the
posterior distribution of the coefficients. The coefficient estimation uncer~
tainties are defined as the differences between the standard deviations of the
coefficient simulations and the standard deviations of the error simulations.

If the specification of the model, in this case, for example, a six-
variable, four~lag VAR, were the true underlying stochastic mechanism which
generated the observations, then the variance of the combined error term and
coefficient simulations would be the variance of forecast errors generated by the
model. Fair thus suggests that the average difference between the forecast error
squared and this variance be called the misspecification of the model. He
‘suggests that for variables with trend rather than averaging directly, the
averaging should be made with misspecification expressed as a percent of the
variable's level squared.

Given the estimated average misspecification, Fair caleculates the
total uncertainty of a given forecast; that is, the uncertainty due to errors,
coefficient estimates, and misspecification. It is the square root of the sum of
coefficient simulation variance and the average misspecification and is
expressed either in units of the variable or as a percent of its level depending
on whether the variable has a trend.

The six wvariables in Sims' VAR are Money Supply, Real GNP, the GNP
Price Deflator, Wage Rates, the Import Price Deflator, and Unemployment Rate,
Each regression equation includes a constant, trend, seasconal dummies, and four
lags of each variable in the system. The model iz estimated using OLS separately
on each of the six equations. All variables except unemployment rate are esti-
mated in logs, but in the process of stochastic simulation, exponentiation is
performed 80 that forecasts, standard errors, and misspecification are all

expressed in terms of the original levels. The five variables other than
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unemployment rate contain trends, so their misspecifications are calculated as
percents of their levels,

The quarterly, seasonally adjusted data was taken from the Fair model
data bank and is described in Fair [1978a] . The period of estimation begins in
1954-1 for the dependent variables and ends in 1978-1. Forecasts and estimates
of misspecification are generated for each of the 35 periods from 1969-1 to
1977~3, using stochastic simulations with 50 drawings of error terms and coeffi-
cients. The estimator of total uncertainty is based on a2 set of forecast
simulations made using data through 1978-1, Five hundred drawings of error
vectors are made for this final stochastic simulation.

The specification of the second model is exactly the same as the first,
except that each equation is estimated with the addition of a prior distribution.
In terms of the parameters defined earlier, this is a prior with parameters
A 1, Yo ® .5, and X = .1,

Calculations for the model without a prior required 6U4 seconds on the
CDC Cyber 172 computer at the University of Minnesota, while the model with a
prior required 1024 seconds. The additional time was due almost entirely to the
necessity of factoring six different coefficient covariance matrices each period
rather than the one which is the same for all equations in the no-prior model.

The two modifications which were made in Fair's procedure, correcting
for degrees of freedom and dropping the one-guarter estimation lag, made very
significant changes in the results. Table 2 compares Fair's results with, first,
a duplication of his procedure (slight differences may be attributed to the
randomness introduced in stochastic simulations), then to a specification with
those above-mentioned two changes, and finally to the model with the prior. The
correction for degrees of freedom has the effect of increasing the estimated

variance of errors in the model. Thus, the error term uncertainty increases.
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TABLE 2
Estimates of Uncertainty

Model I(a) = Results in Fair [3].
Model I(b) = Same model with different simulations.
Model II = Model with corrected degrees of freedom and no estimation lag.

Model IIT = Model estimated with prior.

a = Uncertainty due to error terms.

b = Uncertainty due to error term and coefficient estimates.

¢ = Total uncertainty.

d = Estimated degree of misspecification (c-b).

Forecast Horizon 1 2 3 y

~ Real GNP:

Model I(a)
a .bl40 910 1.070 1.290
b .880 1.320 1.640 2.130
C 1.300 2.290 3.040 4_p40
d 20 .970Q 1.400 1.910

Model I(b) '
a .648 .903 1.034 1.288
b .863 1.320 1.604 To2.120
o] 1.299 2.292 3.129 L. 221
d .436 973 1.525 2.100

Model IT
a .730 1.066 1.231 1.475
b 1.081 1.577 2.036 2.584
c 1.276 = 2.061 2.557 3.213
d . 183 L1483 .520 .629

Model I1II
a .T87 1.169 1.408 1.636
b .992 1.494 2.010 2.570
e .985 1.563 2.322 3.251
d -.007 .069 .312 .680

GNP Deflator:

Model I(a)
a .220 .300 420 .560
b ,280 L1420 .630 .B80
& .500 .T70 1.340 2.070
d .220 .350 .T10 1.190
Model I(b)
a .216 .283 .393 524
b 276 419 614 .870
) 504 . 791 1.356 2.106
d .228 371 JTU2 1.235
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470 .620
.630 .900
1.230 2.200
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U491 .651
.636 .919
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.896 1.508
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2.026
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k.292
6.u23
16.924
10.501
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Similarly, the estimated variance of coefficient estimates also rises and causes
the coefficient uncertainty to increase. Since the post-sample forecast errors
are approximately the same in both cases, the estimated misspecification
decreases substantially when the correction for degrees of freedom is made.

The addition of the prior causes error uncertainty to increase, but
decreases the increment due to coefficient estimation. Their sum, uncertainty in
the coefficient simulations, is generally about the same for both models,
although it is usuvally slightly smaller in the model with the prior.

Table 3 shows a comparison of the RMSEs for the two unrestricted VARs
and the VAR with a prior. The dropping of the estimation lag improved fore-
casting performance slightly, but an additional larger improvement is gained by
the addition of the prior. The forecasts considered here are both the means of
the coefficient simulations and the zero error RMSEs. Little, if any, gain in
forecast accuracy is obtained by the stochastic simulation process. With only S0
draws per period, the increased variance seems to dominate the decreased bhias in
most cases.

In the following graphs the misspeecification over time for each of the
six variables iz displayed for both specifications. The series are scaled and
plotted with respect to the time at which the forecasts were made.

As 3 first approximation, the assumption of constancy of the mean over
time does not seem unreascnable, although there does appear to be a small posi-
tive trend for unemployment and import prices. It is not so much tﬁe mean of
these series as their variance which appears to change during this pericd. The
increased variance during the 1973-1976 period is apparent in all six variables,
and is particularly striking in import prices. To a large degree the increased
variance of the misspecification is matched by an increase in the variance of the

coefficient simulations. For example, the average standard error of a four-step
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TABLE 3
Root Mean-Squared Errors of Ex Post Forecasts

Model I = Fair's VAR.

Model II = Degrees of freedom and estimation lag-corrected VAR.

Model III = VAR with prior.

(a) = Forecasts from coefficient simulations.

{b) = Forecasts with zero errors.

Forecast Horizon 1 2 3 Ll

Real GNP:

Model I a) 1.406 2.49Y4 3.545 4,954
b) 1.391 2.1466 3.511 4,903

Model II  a) 1.329 2.272 3.061 4,159
b) 1.269 2.20 2.988 4,105

Model III a) 1.0981 1.869 2.778 3.831
b) 1.069 1.835 2.656 3.705

GNP Deflator:

Model I a) L5U8 .B99 1.521 2.393
b} . . .8l .886 1.498 2.336

Model II a) 468 .788 1.276 2.08b
b) 463 .778 1.235 1.975

Model III a) L1408 .814 1.308 1.947
b) L1056 793 1.270 1.883

Unemployment Rate:

Model I al L1484 .953 1.355% 1.547
b) 476 .94l 1.339 1.522

Model IIX a) 435 .858 1.161 1.407
b) JA32 .850 1.148 1.395

Model IIX a) . 395 .809 1.189 1.561
b) .385 801 1.179 1.547

Money Supply:

Model I a) 1.438 1.933 2,072 . 522
b) 1,472 1.968 3.113 4,548

Model II  a} 1.506 2.018 2.749 3.4960
b) 1.533 2.072 2.74 3.984

Model ITII a) . 1.319 1.776 2.481 3.252
b} 1.345 1.744 2.425 3.087

Wage Rate:

Model I a) 1.375 2,468 3.601 4.54)
b) 1.349 2.436 3.487 4.399

Model II a) 1.017 1.790 2.752 3.619
b) .04 1.785 2.714 3.611

Model III a) _ .698 1.038 1.415 1.734

b) 673 .958 1.336 1.661
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Import Price Deflator:

Model I a) 3.859 g.,uyp 18.039 31.867
B) 3.922 9,400 17.646 30.469
Model II a) 3.134 7.627 14,974 26.507
b) 3.081 T7.337 14,199 24.431
Model III a) 3.037 7.558 14,850 26.285

o) 2.988 T.329 14.348 25.459
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forecast of import prices made in 1971 was 3.65. By 1973 it was 11.01, and in
1978 it was ¥7.44.

Fair's measure of total uncertainty may be used to rank the expected
forecasting performance in the current period for different models. In this
senge it may provide a substitute for the usual practice of ranking models
according to their RMSE, Note that if the current stochastice simulation variance
iz the same as the average over the ex post forecast period, then regardless of
its level the total uncertainty equals the RMSE. 'In this sense, the total
uncertainty is basically an RM3SE which has been adjusted for the difference
between the average model variance over the forecast period and the current model
variance.

There is a weakness in this measure of average misspecification. Let
be the k-step forecast error squared at time t, and ;2

tk
eoefficient simulation variance. Then dtk = eik-gik is the misspecification at

2

etk be the estimated

time t, and its simple average, Ek, is Fair's estimate of model misspecification.

This estimate seem3 to be, at best, inefficient. The underlying model assumes

that e , 1is drawn from a distribution with zero mean and variance Uik * 5&.

Fair's estimate of ak assumes that each dtk contains equal information about the

value of Ek, which implies that the variance of the d,,

This is possible, but would require that for largecjtk's the etk's be drawn from a

's does not vary with Opyt

distribution concentrated at plus and minus Opie*

Consider the assumption that the e _. 's are distributed nornally with

tk
mean zero and variance Uik = f(oik) for some specified function f. Then the
etk's are distributed according to a chi-squared distribution, and one can esti-
mate the parameters of f by maximum likelihood procedures.gg/

Fair's assumption that Ek iz constant implies that as the uncertainty

of a forecast increases, the relative amount of misspecification decreases. In
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TABLE b
Estimates of the Functional Form for Total Uncertainty

Forms are: 1) ci +d 2) 02 + d 3) gbi 4) o + BGE
{Standard Errors in Parenthesis)
{Step) a d B o B
Money Supply:
No Prior 1 086 .099  (.052) 1.807 (.043) 175 (.160) 2377 (1.137)
2 .037 137 (.090) 1.402 (.04y) .395 (.243) -.008 (.632)
3 -.114 073 (L180) 978 (.050) .335 (,261) L4310 (.358)
4 ~.137 -.008  (.199) .90% (.066) 181 (.348) L7317 (.356)
Pricr 1 .063 Q70 (.041) 1.6U49 (.038) L138 (.14t .336 (1.241)
2 012 042 (.066) 1,093 (.038) 185 (.145) .531 (.520)
3 -.008 -.022 (.107) .950 (.052) -.003 (.287) <957 (.610)
Yy -.099 -.031 (.178) .925 (.065) L108  (.419) .798  (.513)
Real GNP:
No Prior 1 .043 065 (.043) 1.515 (.036) 280 (.184) ~,706 (.860)
2 176 267 (.128) 1.904 (.065) 604 (.322)  -.178 (.767T)
3 .239 L488 (.232) 1.931 (.083) .984  (,450) -.028 {.521)
y .365 8oy (.396) 1.939 (.110)  1.509 (.794) 162  (.560)
Prior 1 -.001 016 (.029) 1.083 {.026) 245  (.060) -.993 (.246)
2 021 106 (.093) 1.256 (.047) .628 (.201) -.T49 (.378)
3 . 135 259 (.192) 1.391 (.071) .788  (.ug9k) .035  (.680)
Ly .396 571 (.356) 1.597 (.103) 1.109  (.916) .389  (.820)
GNP Deflator:
No Prior 1 .006 005 (.004) 1.397 (.012) .000  (.013)  1.379 (1.015)
2 .018 024 (.013) 1.721 {.020) 039 (.027) 510 {.656)
3 .056 076 (.036) 2.057 (.036) 11 {L072) .503  (.738)
4 174 196 {.090) 2.230 (.059) .218 (.181) .863 (.806)
Prior 1 .002 001 (.004) 1.132 (.033) -.005 (.008) 1.527 (.731)
2 .028 024 (.01Y4) 1.743 (.024) -.003 (.037) 1.847 (1.203)
3 .093 .070 (.03%) 2.120 (.O41) -.006 (.062) 2.213 (1.111)
i) .233 161 {.075) 2.460 (.066) -.030 (.099) 2.741 (1.164)
Unemployment
Rate:
No Prior 1 .ou7 .056  (.080) 1.448 (.107) .092 (.084) B0 (,643)
2 277 .339 (.164) 1.918 (.238) 511 (.301) L7700 (.655)
3 511 646 (.307) 1.985 (.334) L9938 (.560) L4110 (L.658)
i 760 1.286 (.507) 2.569 (.435) 2.132 (.740) -.125 (.413)
Prior 1 -.001 .025 (.038) 1.097 (.091) 286 (.193) -.819 (1.111)
2 .235 216 (. 188) 1.580 (.229) L087  (.455)  1.350 (1.225)
3 .691 .665 (.319) 2.055 (.381) 529 (.911) 1.217 (1.397)
4 1.378 1.397 (.561) 2.670 (.538)  1.529 (1.143) LS4 (1.149)
Wage Rate:
No Prior 1 .023 014 (.019) 1.225 (.024) .005  (.035) 1.158 (.569)
2 .113 019 (.042) 1.273 (.043) -.073 (.084)} 1,737 (.704)
3 311 017 {.072) 1.305 (.067) ~.150 (.123) 1.806 (.630)
Y .527 032 (.112) 1.329 (.085) -.293 (.242) 2.025 (.827)



Prior

Import Price

Deflator:
No Prior

Prior

AW N -

AWM A TN =

-.022
--057
--111
- 197

.708
3.814
11.943
24,592
.630
3.723
11.534
24.517

-.017
"-0”0
"-103
-.179

.568
3.060
8.851

16.790

U499
2.778
T.577

14,957
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(.010)
{.022)
(.023)
(.023)

(.206)
(1.086)
(3.152)
(6.103)

(.180)

(.927)
(2.596)
(5.119)

671
.666
.600
.589

3.753
5.233
6.202
7.5T4
3.660
5.638
T.377
10.041

(.013)
(.019)
(.027)
(.032)

(.117)
(.248)
(.403)
(.566)
(.108)
(.282)
(.614)

.008 (.032)
026 (.079)
~.126  (.032)
-.203  (.072)

-.003 (.251)
.362  (.796)
1.659 (2.137)
8.077 (4.887)
082  (.245)
ST1 0 (.729)
2.115 (1.627)
7.366 (3.655)

.554
-493
1.066
1.108

3.768
4464
k.559
3.165
3.167
§.313
4.603
3.851

(.504)
(.546)
{.266)
(.317)

(1.735)
(1.862)
(2.019)
(1.605)
(1.584)
(1.765)
{1.865)
(1.782)
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TABLE 5

Four Measures of Total Uncertainty in 1978-1

Real GNP:
No Prior

Prior

GNP Price Deflator:
No Prior

Prior

Unemgldyment Rate:
No Prior

Prior

Money Supply:
No FPrior

Prior

Wage Rate:

No Prior

{Step)

EW RN TN I N WA EWMNN = FwWwm e EW N - N

W D

-~

g

§+‘a‘

1.275
2.061
2.557
3.213

.985
1.563
2.322
3.251

435
672
1.057
1.674
<357
.752
1.197
1.786

A2y
.806
1.049
1.219
356
.751
1.123
1.445

1.423
1.575
1.616
2.079
1.35%0
1.564
2.056
2.305

.897
1.508
2.207
2.782

g

2 ~
£+ d

1.359
2.272
3.004
3.837
1.068
1.814
2.575
3.511

422
719
1.148
1.739
. 344
721
1.097
1.570

LU34
.843
1.112
1.418
.392
737
T.1M
1.452

1.469
1.864
2.120
2.378
1.374
1.657
2.023
2.449

844
1.158
1.391
1.671

1.343
2.176
2.829
3.599
1.032
1.675
2.371
3.249

21
.679
1.069
1.538
345
697
1.029
1.453

A37
N-22
1.082
1.365
.374
.720
1.082
1.377

1,451
1.719
1.918
2.270
1.400
1.594
2.025
2.417

.839
1.209
1.518
1.811

1.400
2.368
3.121
4,022
1.214
2,146
2.832
3.698

421
.T31
1,182
1.759
.328
.693
1.022
1.432

424
.830
1.114
1.429
U425
.728
1.106
1.459

1.478
1.984
2.230
2,444
1.334
1.639
2.024
2.476

844
1.125
1,298
1.437



Prior

Import Price Deflator:
No Prior

Prior

Euw N -

LR - TN -

- b0 -

.605
.718
.T43
.509

3.283
T7.112
12,401
17.667
3.207
6.976
11.815
16.924

641
.820
=797
.66u

3.063
6.560
11.084
15.300
2.935
6.263
1¢.002
13.814

.627
082"9
. 999
1. 146

3.727
8.067
14.595
22.391
3.817
8.031
13.380
20.354

634
.886
.T12
.661

3.731
7.690
13.159
17.038
3.666
7.419
11.526
15.250
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the context of a more general functional form, Utk = f(;ik) oo+ Baik, Fair has
assumed that B = 1. The asymptotie variances computed from the maximum likeli-
hood procedure are usually too large to reject this hypothesis with strong
confidence, particularly since only 35 observations are used in the estimation.
Nevertheless, since the measure of total uncertainty hinges on the
estimate of misspecification, one would feel more confident using the total
uncertainty measure if it were not highly sensitive to changes in the exact form
of the specification of the measure for misspecification of the model.
In Tables 4 and 5 four functional forms for total uncertainty are
~2
k ¥ Tek K

Fair's method. The second uses dk + Uik’ with dk computed using the more

efficient maximum likelihood estimation. The third measure is Bkot

a maximum likelihood estimate of B in the above specification for f with o

compared for the two models. The first measure uses 4 with 4, computed by

K’ where Bk is

-~

-constrained to be zero. Finally, total uncertainty is estimated bytlk + Bkcik

with ; and é estimated by maximum likelihood.

The overall resﬁlts do not seem to be highly sensitive to which measure
i1s used. Considering the one-, two-, three-, and four-step forecasts for each of
the six variables, there are 24 comparisons of total uncertainty. Of these the
model with a prior has less total uncertainty in 16 cases using the first
measure, 21 cases using the second, 19 using the third, and 21 using the fourth.
These results may be compared with the RMSE measure in which the model with prior
was lower in 18 or 20 of the 24 cases based on zero errors and coefficient
simulation forecasts, respectively.

One advantage the total uncértainty measyures have over RMSE is that
they change from pericd to period to reflect changes in the uncertainty of the
model with respect to current conditions. A comparison of the same two models

cne period earlier, that is, in 1977-4, for the same four measures of total
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uncertainty gave the model with prior less uncertainty in 15, 17, 14, and 19
cases, respectively.

The increased advantage of the model with prior in 1978-1 suggests that
conditions may have entered an area of the state space for which recent history

gave relatively less information.
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Appendix
Maximum Likelihood Estimator of Total Uncertainty

Let the k-step forecast error at time t be e Assume that e is

tk’ tk
2

distributed normally with mean zero and variance 02 which is a function of gtk'

tk

the estimated coefficient simulation variance. Then eik has the chi-squared

function density

2
-e
2 2 =172 tic, =1
LN (Znotk) exp{ 5 )etk‘ (30)
20tk

Suppose gzk = Uik + d. Given T observations on ezk and oik, the log likelihood

function is

Log L(eik,d,oik,t=1,T) = (91)
T 4 ~ Ay eik
=) [5{10g 2n+log(d+ay, ))+ —= Ay +log ey ]
t=1 . 2(d+0'tk)
and
T 32
ALBL - ] (i ~1)] (92)
3d t=1 2(d+0tk) (d+0tk)
and
2 T 2
3 Logl  _§ 1 Ctk L5 (93)
2 T ==t - 3 93
3d £21 (dwik) (d+df,)

The estimate of d is obtained by maximizing the log likelihood funec-

tion., Initial estimates of d were obtained by regressing
2

e

tk o~
(2 - G (94)
Tek

on :l—. Maximization was then obtained by iterating with a Davidson-Fletcher~

Otk
Powell algorithm. The asymptotic variance of the maximum likelihood estimate is
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glven by

2
- L), (95)
ad

Similar procedures were followed for the specifiecations Uik = Boik and

2 n2

Utk = Qo+ Botk.
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Larger Models

The results to this point have described how prior restrictions on
relatively small VAR systems can improve forecasting performances over that of
unrestricted models. These techniques also allow estimation and forecasting to
proceed in VAR systems larger than it is possible to estimate with unrestricted
oLs.

For example, consider expansion of a system with a given number of lags
by the addition of new variables. Eventually, the number of coefficients will
exceed the number of observations and OLS estimation would be impossible. One
specification which would allow estimation to proceed is a prior which uniformly
restricts other variables in each equation. The limiting case of this prior is a
set of univariate autoregressions.

Starting from the limiting case, it is possible to compare forecasting
performances as the prior tightness on other variables in each equation is
decreased. While for most variables in an experiment of thi=z kind there is a
region of improvement followed by worsening, this is not always the case. One
exception, for example, is net exports, for which in the mid-seventies a uni-
variate specification dominates ones with any interaction allowed with other
domestic macroeconomic variables.

The results of an experiment of this kind are shown below. The VAR
system includes 11 variables and 5 lags. The projection period is 1972-1 through
1978-4. The priors in the second and third specifications, in effect, leave own-
lag coefficients unconstrained (standard errors are 100.), while lag coeffi-
cients of other variables are given standard errors about zero of .001 and .01,
respectively. The fourth specification imposes restrictions on own lags,
starting with a standard error of .2 about a mean of 1. for the first lag; and
standard errors beginning at ;01 for the first lag of other variables, The

standard errors become smaller for coefficients with larger lags.
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As the size of a VAR system increases, it becomes increasingly implau-
sible that the procedure of treating all variables symmetrically is optimal.
When there are 10 or 15 variables in the system, for example, there would seem to
be a strong case which could be made that forecasting performance might be
improved by the imposition of some structure dérived from economic theory.

One could conceive of specifying a prior similar to those congidered
here in which for an N~variable VAR, an additional N2 parameters specified
relative weights for every variable in every equation. A more tractable approach
would seem to be to specify a function which generates those N2 parameters on the
basis of, for example, an ordering of the variables.

One such function may be represented schematically as a star inside a
eirele. Variables on the star are those which are assumed to have strong, but
equal, impacts on all other variables in the system. Other variables are
arranged‘in a circulap ordering with related variables placed close together in
the ordering. Relative tightness of the prior on coefficients in an equation
are then made a function of the relative positions of the variables.

For example, with N variables in a system, let K of them be specified
to be on the star, i.e., in the set § and N-K arranged around the outside, i.e.,
in the set (, with a given e¢ircular ordering. An additional parametér, Y3 is
specified which reduces the standard error of the prior fqr the coefficients of

variable j in equation i by dividing them by Gij’ where

.
1 if ieS, jes
Y3
J (N-K) 3 if ieS, jeC
835 % Y3 (96)
2 if 1eC, jes
L3 ir iec, jec
. ieC,
. iJ

and Lij is the distance around the circle between variables i and j.
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Shown below is a schematic drawing of a cirele-star prior for the

above-mentioned 11-variable VAR.

CONSUMPTION

PRICES INVESTMENT

// M1Q COM P RT ‘\

WAGES 1\\‘1’//7 GOV PUR
\ F GOV EXP /

HQURS NET EXPORTS

EMPLOYMENT

In experiments with such priors I have generated some, but usually not
large, reduction over symmetriecal priors.

The Theil U statisties compiled by McNees [1975] for several large
econometric models provide a useful benchmark for comparison with the VAR. For
this purpose 1 constructed a 15-variable VAR which included 10 variables from
IMcNees' study along with 5 other variables (M1, Commercial Paper Rate, Import
Price Index, Wages, and Crude Materials Prices). The Theil U statisties for this
system are plotted along with the NcNees statistices in the following graph=s. The
circle-star prior in this case had parameters Yy = 1., Yy = .5, A= 1, Y3 = 1.
The variables on the star were M1, Commercial Paper Rate, and Personal Con-
sumption of Nondurables and Services. The circular ordering was Real GNP,
Unemployment Rate, Wages, Implicit Price Deflator, Business Fixed Investment,
Change in Business Inventories, Personal Consumption of Durable Goods, Federal
Government Purchases, Residential Structures, Crude Materials Prices, Import

Prices, and Net Exports.gﬂ/



Univarite Autoregressions

STEPS
AHEAD

-1 A I —

AVERAGE

Prior: Y4

W1 N W -

AVERAGE

COM

P RT

.891
1.034
1.029

.975

954

.962

.963

.940

. 968

.828
.924
. 884

.833
.818
.849
.884
.892

864

1]

Theil U Statistices

F Gov CON- INVEST- Gov NET EMPLOY-
M1Q EXP SUMPTION  MENT PUR EXPORTS MENT HOURS WAGES PRICES AVE
.318 .691 606 1.022 .087 1,038 597 .857 .266 .288 687
.289 .594 543 1,044 1.072 1.020 .624 .922 .216 .301 .696
267 .528 497 1.095 1.008 .991 6U0 1.002 .204 320 697
.282 .4a8 513 1.169 1.041 .954 .675 1.041 .193 .358 701
.297 189 .527 1.209 .984 .921 697 1.059 .188 .399 702
.306 487 521 1.237 .924 917 .696 1.054 . 1BT b2 .703
324 479 51U 1.260 .919 .887 .695 1.079 .191 .u82 .708
.336 LU64 .509 1.309 .882 .878 .699 1.119 . 196 521 714
.302 .529 .529 1.168 .4984g .951 .665 1.017 .205 .389 01
.00001, X = 100.
317 .688 611 1.005 1.014 1,064 .591 .800 .266 287 .679
.288 .589 .553 1.010 1.129 1,004 .616 .831 216 .300 .686
.266 521 .510 1.040 1.198 1.120 .629 .865 .205 .320 .687
.279 492 531 1.095% 1.186 1.146 662 .853 .195 .357 .693
.294 U85 .552 1.110 1.132 1.162 .686 .829 .189 .397 696
.320 A72 555 1.107 1.0U47 1.182 .696 .791 .193 482 .703
.331 455 560 1.748 1.034 - 1.198 .T13 .805 .198 522 LT14
.300 .523 .553 1.078 1.099 1.143 661 .821 .206 .388 .694



Prior:

STEPS
AHEAD

=1 "N =Wy —

AVERAGE

Prior:

=1 R W N -

AVERAGE

Y1

=0, y, = .0001, X = 100.

COM F GOV CON- INVEST- GOV NET EMPLOY-

P RT M1Q EXP SUMPTION  MENT PUR EXPORTS MENT HOURS WAGES PRICES
.B27 .313 L654 621 .ols5 1.035 1.085 .556 L7719 .259 L2Th
.B95 .279 L5481 .564 .905 1.179 1,189 .556 .804 .208 .280
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.548 .300 . 304 .649 .967 1.720 1.425 .572 .991 176 406
517 .311 .356 675 1.020 1.954 1.481 610 1.108 L 181 427
.690 . 284 466 .602 LG54 1.450 1.296 .565 .906 . 193 L342
=1, Y, = 05, A = .2,

.863 .296 .623 615 .913 1.034 1.053 .559 .779 .252 272
.912 .259 520 567 .910 1. 142 1.108 .569 .796 . 206 .283
.837 .237 456 .532 924 1.201 1.141 573 .833 .194 .305
.709 .250 28 .571 .965 1.197 1.171 .597 .8u1 . 184 .333
670 .262 .419 .619 .999 1.175 1.199 .621 .854 76 .364
672 2TH 410 650 1.01%4 1.133 1.231 .634 .873 75 .396
.637 .295 .394 .686 1.036 1.136 1.261 652 .918 .180 427
.606 .309 .373 .723 1.105 1.168 1.309 ,700 1.012 . 186 452
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Theil U Statisties for Circle-Star Prior

Prior: Yy = .5, Y, = 1, A= .2, Y3 =1,

STEPS CoM F GOV CON- INVEST- Gov NET EMPLOY-
AHEAD P RT M1Q EXP SUMPTION  MENT PUR EXPORTS MENT HOURS  WAGES PRICES AVE
1 797 .297 .651 616 .921 1.040 1.051 .583 77 .252 .275 .660
2 .843 .263 .555 .565 .903 1.159 1,100 .601 .789 . 204 .285 660
3 CTTY 245 .85 .530 .908 1.221 1,140 .609 814 . 189 306 .656
4 .660 .258 51 570 <431 1.209 1.177 .638 801 7T .335 .655
5 601 .269 .h38 614 .939 1,182 1.210 .662 791 .168 .368 658
6 597 277 422 643 .925 1.125 1.240 674 .787 . 166 o2 660
7 .598 .293 .390 .678 +919 1.122 1.264 .689 .812 .169 .435 670
8 .592 .301 .347 713 .961 1,124 1.302 .T33 .879 .176 461 690
~ AVERAGE .683 275 JU67 616 .926 1.148 1.185 .b49 .806 .188 .358 664

nOL—-
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CHAPTER IV
USES OF VECTOR AUTOREGRESSIONS

This chapter considers several of the types of analyses which are
possible given an estimated vector autoregressive representation. The first
section illustrates how stochastic simulation of an estimated model can generate
the probability of any event, such as the onset of a recession, which can be
defined in terms of the properties of a sample path. The next section defines
the impulse response function, the dynamic response of the system to an innova-
tion in any one of its components. The third section demonstrates how forecast
variance can be partitioned among a set of orthogonal error processes defined by
a particular ordering of the variables in the system. Finally, an example is

given in which several of the techniques developed in this paper are applied.
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Sample Paths and Histograms

Policymakers often want answers to questions such as ®What is the
likelihood of a recession within the next year?" Unfortunately, such questions
do not lend themselves to convenient analytic solutions, and standard forecasts
will generally be of little help. For example, even though it is quite conceiv-
able that a projection of GNP would increase monotonically, such a forecast is
not necessarily incompatible with projecting that a recession that year is quite
likély to ocecur.

The explanation of this paradox is that the forecast is an expected
value or mean of the distribution projected by the model. A constant forecast,
therefore, does not imply that the value of the series will remain constant, but
rather that its mean remains constant. The future path of the variables which is
actually realized is expected to resemble not the projection itself, but a random
sample from the distribution which underlies the projection. Such a sample will
generally have many random movements up and down.

One implication of the above discussion is that even given a projection
of GNP, it is still difficult to forecast the likelihood of a recession. For
example, If we define a2 recession as three consecutive quarters of decreases in
real GNP, then the probability of such an cceurrence is 2 complicated function of
the probability distribution of future sample paths. Wecher [1979] has suggested
a method for answering such questions. The technique is to build a monte carlo
simulator into the prediction program. The estimation procedure generates not
only estimated coefficients of the system, but also a distribution from which
random shocks are drawn. Wecher's suggestlon is to take the current state of the
system and repeatedly generate sample paths by feeding in random shocks drawn
from the distribution of residuals which has been observed in the past. Then

statistics can be generated concerning the relative frequency of any events about
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which policymakers are concerned. Thus, for example, we can record the per-
centage of sample paths which include a recession within the next four periods,
or generate a histogram of the probable next occurrence of a drop in interest
rates, This method is quite general and can be used to answer probabalistic
questions about any function of future sample paths., An example is shown in

Figure 7.



Porcent

Figure 7

Histograms, such as the one shown below. are generated by the
pradiction program using the monte carlo method. This example
presents the likelinood of the first occurrence of a downturn
{defined as the third quarter of three consecutive decreases) in
real GNP, This particular histogram is based on an autoregressive
systern with GNP, money growth, inflatian. the three-month
Treasury bill rate, and the unemployment rate.
Percent
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Impulse Response Matrices

Once én autoregresasive representation has been estimated, we can
derive the response of the system to an innovation in any of its components.
This impulse response function is simply the moving-average representation of
the system given in (2). It is a sequence of matrices, MO, M1, MZ’ M3, cvsy With

MO = I, such that

Y(t) = Moe(t) + M1e(t-1) + ..0 = M(LYe(t) (97)

where the €'s are the innovations in the Y process. The response of the ith

variable to a unit innovation in the jth

variable K periods earlier is given by
the 13" element of M.,

The relationship between M(L) and B(L) is given in (7). Given the
autoregressive representation of a system, B(L), there exists a simple algorithm

for generating the sequence of Mi's. If ¥(1), ..., Y(P) are set to zero vector in

the pth-order antoregressive system, and the innovations are given by £'(0) =

[0,0,...,1,0,...,0], where the 1 is in the jth column, and €(1) = ¢(2) = ,.. = 0,
then the ocutput vector
Y{P+k) = B(LYY{P+k-1) + (k) k=0,1,... (98)

th

gives the jth column of the K impulse response matrix.

Unit innovations may be difficult to interpret, for example, when the
standard error, ci, of €4 is very small. For this reascon, one may wish to exploit
the linearity of the system and generate a scaled version of the impulse response

funetion which gives the response to innovationz one standard error in size. In

~ - Y~

this case one generates the sequence of matrices MO, §1, MZ’ M3, ve. With ﬁ

0
dlag[ﬁi] and Mi = MiMO'
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Some caution must be exercised in interpreting the impulse response
matrices. First it must be recognized that one does not in general expect
innovations to different variables to oceur independently. The correlation
matrix of the residuals will indicate which innovations are 1likely to occur
together. Because this model is linear, the response to a combination of inno-
vations is just the sum of their separate contributions.

Another caution concerns the implicit assumption that the structure of
the system does not change. This requires careful consideration when impulse
response characteristics may enter into policymaking. For example, if monetary
policy generates a money supply process which can be represented as a linear
function of lagged variables in a particular system, then inclusion of a money
variable in the specification will lead to an estimate of the reduced-form money
supply rule. 3uch a system should correctly forecast the response to a random
innovation in the money supply, given that the money supply rule remains
unchanged.

One cannot, however, successfully attempt to set some variables such
as GNP at a certain level by implementing a new rule defined by the procedure of
estimating a VAR system and giving a shock to the money supply of a particular
size based on the projected impulse response. The act of setting the money
supply according to the impulse response characteristics of the system is itself
a change in the money supply rule. The structure of the system is changed.
Because expectations change across regimes, the response to a random innovation in
the money supply will not be the same as the response to a money supply of the

same magnitude which has been set according to a2 new rule.

Orthogonal Decomposition of Variance
It is sometimes of interest to partition the variance of the forecast

error into the proportions attributable to innovations in each variable in the

system.
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If the contemporaneous innovations 1in different variables were
orthogonal, the decomposition of the variance of forecasts would be straight-
forward., Thus, define the {nx1) vectors Li = (0,0,...,0,1,0,...,0), where the
one is in the ith position., Then one can write the K-step forecast of variable i

as
E Y, (t+K) = ¥, (44K} ~ L. e(t+K) {99}
= LMe(t+K-1) - ..o -~ LM, e(t+1)

where the Mi's are the moving-average matrices and MO = 1 is assumed.

The variance of the K-step forecast of the ith variable
2
E{[Yi(t+K)-EtYi(t+K)] } (100)
would be
K~1
2 2y 2
s (i . 101
[01+kz1{ij L (101)
since all cross products would be zero by assumption. Then the percentage of
variance in the X-step-ahead forecast of variable i due to innovations in
variable J would be given by

K=1
100 § Mi(iJ)oi
k=0

. (102)
K-1
2, ..y .2
kZOIij(lj)Uj

In general, however, cross covariances are not zero and some normali-
zation must be made before the forecast variance ean be partitioned. The method
suggested by Sims [forthcoming] is to orthogonalize the errors according to a

given ordering of the variables. Different orderings will lead to different

decompositions.
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Suppose a three-variable system has the error covariance matrix

%11 Y12 943

E(epel) =layy o, Opg | = R (103)
931 Y32 Y33
and we take the ordering as 1, 2, 3.

Then we define a new set of errors, Usys i=1, 2, 3 which span the same

space as the sit's as follows:

Let Upp 7 Eqpv

Let Use be that part of €5y which is orthogonal to €94 That is, let

Uy be defined by
€o¢ = P1€1t + U, (104)
E[uzt'€1t] =0
then
E{e,.*e,.} o
P, = 2t2 1t = 021. {108)
’ 11
B{el,]
Let Uz be that part of €3t which is orthogonal to €t and €1pe That
is, let u3t be defined by
Eap = Ppfqy + Pafy + Uay, (106)
E[u3teit] = 0, i=1, 2.
Then
2 o O I
2 11 12 13
= * (107)
P
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In this three-variate system we have

u1t 1 0 0 E1t
uy, | =1 -P, 1 0 €oy | - (108)
u3t -P2 -P3 1 €3t

In general we will have defined
u, = Geg . (109)

where G depends on the particular ordering of the variables. Next we form
E[utué = E[Get€£G'] =GRG' = ¢. By construction ¢ is diagonal. Its diagonal
elements give the variances of the orthogonal components of the residuals.

Rearranging (99), we have

Y EY

tek ~ Bplpax S Cpax v M

1€p,Ka1 F ooee Mk~1€t+1' {11Q)
Substituting for the e's leads to

Y - E Y - IG ut+k + M1G th+k_1 + a0 + P’I](_.}G Ut+1.

t+k tTt+k ()

The variance matrix of the K-step forecast is given by

Ef(Y B Y

ek Bt Vo) T B Yo '] (112)

-1 - -1 1t IREER Y
VY L MG 46" MIe o+ M GTl0GT M

-1

18

2+ M1QM; e + MK_TQMI'{_1

which does not depend on the orthogonalization order. Define Hk = MkG-] and let

hk(ij) be the ijth element of Hk' Then notice that the K-step forecast variance
of the ith variable is given by
K

-1
12
kZOZjhk(la) ®55° (113)
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Thus, the percentage of K-step forecast variance in variable i accounted for by
the component of innovations in variable J orthogonal to innovations in variables
1, +ea d-1, i3 given by

Ki1 »
100 § h (13)%4
k=0 ¥ JJ
K= 2
v Ejhk(la) by

. (114)

An example of the orthogonal decomposition of variance for the system

described on page 38 is shown here.

Orthogonalization Order Is:

Real GNP Money Prices

Variance of Orthogonal Components:

22.46848 .38800 . 14088
K-Step Fore- Percent caused by shocks in:
cast Variance Real GNP Money Prices
Real GNP:
K= 1. 22.3684798 100.0000 0 0
K= 2. 55.7682212 93.9750 3.0165 3.0085
K= 3. 105.,7702653 84,2433 8.1983 7.5585
K= 4, 186.9537991 74.1574 13.4568 12.3858
K= 5. 277.9306256 67.1475 15.9818 16.8707
K= 6. 374.3044668 60.9871 15.8518 23,1611
K= 7. 483.3193992 57.5381 14,384% 28.0776
K= 8. 574.0624279 56.3136 12.9117 30.7748
K= 20. 884.7682757 63,2161 10.1328 26.6511
K= 35. 1241.4433123 59.3997 11.9453 28.6550
K=100. 3655.9592969 43.3026 31.3803 25.3171
Money:
= 1, LU175643 7.0797 92.9203 0
K 2. 1. 7504409 16,0334 82.0186 1.5481
= 3. 3.9124286 17.9789 76.2685 5.7526
= b, 6.5453000 17.9734 72.6081 9.4185
= 5. 9.1612671 19,4133 68.9u463 11.6405
= 6. 11.6525446 19.4017 67.3673 13.2309
K= 1. 14.2594038 18.9300 66.9913 14.0788
K= 8. 16.9587293 20.0646 65.599% 14,3358
K= 20. 62.129874Y 27.4154 52.4878 20,0968
= 35. 175.6838151 32.4645 4y 4267 23.1068

K=100. 1698.8725055 52.7956 28,9040 18.3004
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Prices
K= 1. . 1647344 10.8893 3.5931 85.5176
= 2. .5349815 6.5199 1.2124 92.2677
K= 3. 1.0591736 5.3365 L7174 93.9461
= 4, 1.7272635 5.3761 1.1559 93.4679
K= 5. 2.3723u499 y,2243 1.8510 93.9247
K= 6. 2.9587831 3.7101 2.7537 93.5362
K= 7. 3.3583191 3.4035 3.6166 92.9799
= B, 3.5823575 3. 4264 5.1647 91.4089
K= 20. 12.5767273 13.9636 46.3619 39,6745
K= 35. 50.2696125 21.0629 49,3592 29.5779
K=100. 784.331462Y Y7.4652 30.4551 22.0797

An Example

In this section I will briefly illustrate some possible uses of the
vector autoregression tools I have described by applying them to a question of
current interest, the relationship between money growth and inflation. Two
common assertions concerning these variables, see, for example, Meltzer [1978],
are that in the long run inflation depends on the difference between the growth
rate of money and the growth rate of GNP, and in the short run inflation may vary
due to changes in the demand for money and other factors.

I have examined quarterly, seasonally adjusted, United States data for
growth rates of money, prices, output, demand deposits and government expendi-
tures, and interest rates., Observations from 1950-1 to 1978-1,

In considering whether money growth causes inflation, a useful proce-
dure is to test for a Granger [1969] causal ordering. In this case we test the
null hypothesis that the lags of money growth are zall zero in a regression of
inflation on constant, trend, and past rates of inflation and money growth. We
also test equations with GNP growth and the difference between money growth and

GNP growth included as explanatory variables.
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Granger Causal Ordering Test Results

Dependent variable is inflation.
Independent variables: I = inflation; M = money growth; G = GNP growth.

Equation 1 Equation 2 Equation 3

I M T M-G I M G
8 Lags 0000 L1438 .0000 .3u88 .0000 L1681 .6996
12 Lags .0000 <3117 . 0000 3309 .0000 . 1546 A757

Table 6--Shown are the marginal significant levels for Granger tests in three
regressions of inflation on lagged values of inflation and other independent
variables,

The results of the Granger tests are inconclusive. The marginal
significance level of .1438, for example, means that thg explanatory power of
money growth . in this regression would be attained or surpassed 14 percent of the
time by chance in repeated samples even if the true coefficients on lags of money
growth were zero. This level, although suggestive, is too large to cause rejec-
tion of the null hypothesis that money growth does not cause inflation. The use
of forecast performance statisties allows us to test directly the ability of
money growth to help forecast inflation over different horizons. We can compare
the performance, as measured by the root mean square error of forecasts generated
by regressions which do and do not include money growth. In these examples the
forecasts were made over the period 1968-1 through 1978-1.

Root Mean Square Errors of Predictions
for Inflation Without and With Money Growth

Quarters Ahead 1 2 3 b 5 6 7 8

8 Without 1.75 2.09 2.8 2.87 3.06 3.16 3.23 3.23
Lags With 1.75 1.94 2.18 2.62 2.76 2.79 2.82 2.81
12 Without 1.71 2.05 2.34 2.74 2.97 3.15 3.25 3.25
Lags With 2.02 2.24 2.4 2.85 2.34 2.97 2.97 2.92

Table 7--Forecast errors generated by OLS regressions of inflation on lags of
inflation with and without lags of money growth.

As shown above, the addition of money growth clearly helps to predict

inflation in the long run.
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The addition of prior distributions not only leads to better fore-
cast;ng performance, but allows the money growth lags to enter the regression
with varying amounts of weight. Results in Table 8 show that the best long-run
forecasts of inflation are made by giving even more weight to past rates of money
growth than to past rates of inflation,

EMS Errors of Predictions for Inflation
With Varying Weight on Money Growth

Quarters Ahead 1 2 3 4 5 6 7 8 12
Values .00 1.54 1.93 2.24 2.63 2.82 2.99 3.05 3.06 2.94
of Y2 .25 1.79 2.09 2.36 2.68 2.83 2.96 3.03 3.02 2.93
.50 1.77 2.06 2.30 2.60 2.74 2.83 2.89 2.87 2.84

.70 1.78 2.05 2.26 2.56 2.67 2.75 2.78 2.77 2.78

1.00 1.79 2.05 2.25 2.54 2.63 2.69 2.72 2.7T1 2.75

2.00 1.87 2.10 2.27 2.54 2.60 2.63 2.65 2.65 2.73

5.00 1.97 2.17 2.30 2.58 2.62 2.63 2.65 2.65 2.72

Table 8--3hown are prediction error statistics generated from regressions of
inflation on twelve lags of inflation and money growth with white-noise-form

priors with A = .1, Yy = 0, and Y, as shown.gg/ . Larger values of Yo give more

weight to lags of variables other than the dependent variable, in this case more
weight to money growth, Yo 0 excludes money growth,-y2 = 1 gives equal weights

to both variables, Yy, = @ leaves other variables unconstrained.

Meltzer's conjecture that it is the difference between money growth
and growth of output, rather than money growth alone, which causes inflation is
not supported by the data, Both Granger tests (Table 6) and forecast errors
(Table 7) indicate that inflation is better explained by money growth alone than
by the difference between growth of money and output. On the other hand, if we
allow growth rates of money and output to enter the regression separately, then

the combination does slightly improve forecasts several periods ahead.
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EMS Errors of Predictions for Inflation
With Money and GNP Growth Rates

Regression 1 2 3 y 5 6 7 8 12

IonlI, M 1.79 2.05 2.25 2.54 2.63 2,69 2.72 2,71 2.75
I on I, MG 1.84 2.1% 2.4 2,74 2,90 3.02 3.09 3.05 2.84
IonlI, M, G 1.84 2,09 2,26 2.53 2.62 2.65 2,68 2.66 2.65

Table 9--These prediction errors were generated from regressions with twelve
lags on each independent variable and white-noise-form priors with X = .1
Y, =0, Y5, = 1.

1 2

The conjecture that the best short-run forecasts of inflation may have
to take account of other variables is reflected in the data. By including as
independent variables the additional series comme?cial paper rate, and growth of
government expenditures and demand deposits, gains are made (see Table 10) in
short-ters forecasts.

RMS Errors of Predictions for Inflation
With Additional Independent Variables
Commercial paper rate

Demand deposit growth

C
D
E = Government expenditure growth

Regression on Cone

stant and Trend 1 2 3 Yy 5 6 7 8

Add Lags of I 2.41 2.49 2.59 2.69 2.74 2.80 2.84 2.83
Add Lags of M, G 1.52 1.90 2.18 2.51 2.68 2.84 2.88 2.90
4dd Lags of M, G 1.51 1.84 2.13 2.49 2.67 2.84 2.90Q 2.91
Add Lags of C, D, E 1.49 1.71 1.92 2.25 2.43 2.64 2.72 2.77

Table 10~-These prediction errors were generated from regressions of inflation
on expanding sets of independent variables. A random-walk-form prior with para-
meters vy, = .8, Yy = 1., A = .1 was imposed where applicable.

The dynamic effects of innovations to the different series are given by
the impulse response functions shown in Table 11. Suppose a typical innovation
(one standard deviation in size) in the money growth series of 1.86 percent

occurs. This is to say that in the period of the innovation, money growth is 1.86

percent higher than forecast on the basis of past data. The positive serial



-8y -

correlation of money growth causes increases of 1.29, .67, .32, ... percent to
occur in subsequent quarters. The effect {see Figure 8) on inflation one quarter
ahead iz an increase of .01 percent. The effect two quarters ahead is an
increase of .07 percent. These effects continue to grow for the first year up to
a rate of increase for inflation of about one-quarter percent per quarter. These
increases continue at about the same rate for another two years. Meanwhile GNP
growth is also stimulated at first by the positive innovation in money growth,
but it then declines and becomes negative. The total effect after four years is
basically an increase in money and prices, while the level of GNP is about the

same as where it would have been without the money growth innovation.

Impulse Response Function

Hesponse to a One-Standard-Deviation
Innovation in GNP Growth

Pericds .

Ahead GNP Growth Money Growth Inflation
1 4.1038 0000 .0000
2 2.5815 -.0908 -.0790
3 1.1393 -.3121 -.2297
) .2508 -.3710 ~-.2227
5 -.5532 -.1059 ~-.3088
6 -.9452 -.4313 -.2567
7 -.5628 -.3218 -.2072
8 .1705 0705 -.1867
9 .2507 .3723 ~-. 1064

10 L2465 L4158 ~. 0646
11 .2562 »3136 -.0149
12 . 1436 «1530 0204
13 .0226 .0193 .0227
14 0105 -.0218 .0095
15 .0367 ~.0007 L0144
16 -.0316 .0057 .0356
17 -.1024 -.0081 .0534
18 -.1287 -.0161 L0671
19 -.1339 -.01458 .0690

20 -.1082 -.0077 .0598
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Response to a One-Standard-Deviation
Innovation in Money Growth

Pericds
Ahead GNP Growth Money Growth Inflation
1 .0000 1.8625 .0000
2 L1124 1.2890 . 1227
3 . 1570 L6761 0757
4 .5637 .3232 .2657
5 U248 L1712 .2964
6 0192 . 1993 L1543
7 -.1561 .2021 L1g42
8 -.1329 L0034 ) L2794
9 -.4683 ~. 1589 .2889
10 -.5105 -. 1779 L2755
11 -.3367 -.0782 . 2350
12 -.2159 0125 ATT5
13 ~. 1044 .0236 L1454
14 0176 -.0069 114y
15 L0641 -.0224 .0705
16 L0504 -.0316 .0259
17 0668 -.Qk01 .0150
18 .0888 -.0443 L0405
19 .Q778 -.0u77 0516
20 L0548 -.0438 -.0570
Response to a One-Standard-Deviation
Innovation in Inflation
Periods
Ahead GNP Growth Money Growth Inflation

1 -.0000 .0000 1.6566
2 ~. 4022 -.1876 1.1546
3 -~ 4362 -.2769 .9168
b -.3228 =-.3152 .8568
5 -.2269 -.3408 .5851
6 -.3853 -.3273 .3181
7 -.1855 -.2211 . 1590
8 .0869 -. 1462 .0385
9 1810 -.0857 .0890
10 .3224 -.0527 . 1563
11 L4064 -.0262 . 1068
12 .3632 -.0068 .2258
13 .2593 ~,Q0102 .2249
14 . 1986 -.01618 .2082
15 1322 -.0077 L1788
16 .0629 .0073 L1413
17 .0242 .0273 .1028
18 L0031 LOuT? L06H5
19 -.0180 .0575 .0289
20 ~.0335 0556 L0004

Table 11--Shown are the impulse response functions for a
trivariate eight-lag system estimated with a random-
walk-form prior with A = .1, Yy = 0., and Y5 = 1.
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CHAPTER V
SEQUENTIAL ESTIMATION QF COEFFICIENTS

The Kalman Filter

The procedures and statistical theory described so far have all
assumed that the economy which generates the data is one which can be approxi-
mated reascnably well by a model with constant coefficients. The possibility
that structural changes do occur over time suggests that a statistical model
which takes this into account may forecast better than one which does not.

A natural way to generalize the vector autoregressive specification so
as to include time-varying coefficients is through the use of the Kalman
filter.ggf

The Kalman filter is an algorithm for making recursive linear least
squares projections. Given a current coefficient estimate, the Kalman filter
generates a new estimate on the basis of new data.

The Kalman filter will generate sequential ordinary least squares
estimates as a special case when coefficients are assumed to remain constant, and
it will generate mixed estimates when prior restrictions are imposed. However,
it also will generate time-varying coefficient models in which coefficients vary
according to any general ARMA structure.

The model underlying the Kalman filter is a two-equation linear
dynamic system. The first equation generates time-varying coefficients accord-

ing to a specified structure.

Breq = At Bt + Wy t20, ..., N-1 (115)

kex1 kxk kx1 kx1

where At is known for all t and wt is a random vector.
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The second equation is the vector autoregressive structure, and may be

written

Yt = xt By + vy t=1, ..., N. (116)
1xk kx1 1x3

Assume Bor Wi» Vg are independent for all t and s. Assume E(wt) =0, E(vt) =0

for all t, E(By) = B). Define E{(B,~By)'(By-By)} = B, .
Elw wi] = M E[vZ] = N (17)
e Tt t t*
Assume Eb and B are given, along with M, and N , for all t.

The problem is to find for each t linear least square estimates of Bt

and Bt+1 given values of YO, Y1, sesy Yt’ and XO, cery Xt. Let

yé = [YéY;...Yé]. {(118)

Denote the linear least squares projections of g and 8, given by B and
t+1 t Yt t+1]t

Bt|t’ respectively.
The attractive feature of the Kalman filter algorithm which solves
this problem is that the estimate Bt+1]t is obtained by means of a simple

e

equation which involves the previous estimate, Bt{t-1 and the new information, Yt

X

0 °F fpo1> mevr o

and Xt, but does not inveolve the past data, Yt-1' Yt-z’ vesy Yo or X
t-1|t-1 tosether with Zt_1‘t_1, an

Suppose we have the estimate B

estimate of
= - - 1
At time t we receive the new data Yt and Xt which we assumed is generated by the

equation Y, = X.B, 4 Vi. The Kalman filter algorithm is as follows:



Step 1: Form

Leje-1
an estimate of
Lejt-1

Step 2: Form

~

Et]t

Step 3: Form

Bee
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= At-1Et-1|t—1A£—1 + My

E{Bg-By 1) By By p_g) ')
~ ~ ~ . _1 ~
Leje-1 - Depbmt®e el et XE0) T XDy gy

A ~ -1 ~
Bp1Betfe-r * LepeXeNe (Te-Xehp o8y q)paq)-

(120}

(121)

(122)

(123)

For the purposes of updating OLS or posterior mean coefficient esti-

mates, one sets At z I. The constant coefficient specification takes M

The

Kalman filter updating can be begun at any point in time; for example, at the

beginning of a projection period, by taking the current OLS or posterior mean and

covariance matrix for Bt]t and {t]t’ respectively.
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Time Varying Parameter Specifications

The above-described use of the Kalman filter to update parameter esti-
mates throughout a projection period in the constant coefficients specification
suggests a natural extension of the VAR methodology in a time-varying, stochastie
coefficients model. In this section I report a set of results showing forecast
performances with such models. The experiments I have done are limited in scope
and the results are mixed, In contrast to the similar experiments reported
earlier with the imposition of priors, I have found little room for consistent
improvement in forecast performance through the use of time-varying coefficients
models, and often considerable deterioration. |

4 Dbasic weakness of the Kalman filter approach with stochastice
coefficients taken here is the assumption that innovations to coefficients are
uncorrelated with errors in the regression equation. This assumption implies
that the movements in parameters cannot represent structural changes or changes
in policy which are responses to shocks to the state of the economy. Such
phenomenon can be handled by more general versions of the Kalman filter.gz/ This
consideration suggests one interpretation of the weak nature of the results
presented here could be as support of Rosenberg’'s {1973] contention that "sto-
chastlc parameter regression should be employed as a supplement to analysis of
systematic variation, rather than as an alternative.,"

The first problem to be faced in the use of the Kalman filter time-
varying ccefficients model is the specification of the transition matrices, At,
and the coefficient error variance matrices, Mt' Three different specifications
are considered here. The choices were made to reflect ignorance about the source
and form of parameter variation. The three specifications are referred to as

follows: (A) the Adaptive Regression Model, in which the coefficient on constant

follows a random walk and other parameters do not vary; (B) the Random-Walk
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Pafameters, in which all coefficients follow a random walk; and (C) the Shrink to
Mean Estimator, in which the coefficient vector subject to a white-noise distur-
bance decays toward an unknown mean.

For each of the models a variety of choices for 03’ the scale of the
error variance in the Kalman filter coefficients equation, were considered.
Experiments were performed on univariate systems. FEach equation ineluded six
lags and a constant. The data used in this section consisted of monthly obser-
vations on M1, Personal Income, Prices, and the rate on four- to six-month prime
Commercial Paper, with observations from 1953-1 to 1979-4. An estimation period
of 1953-7 to 1959-12 was used to generate an initial OLS parameter vector 80 and
its covariance matrix ZO[O' In each of the experiments these values were entered
inte the Kalman filter algorithm, and new parameter estimates and covariance
matrices were generated for each month from 1953-7 to 1979-4, The use of OLS
eatimates as initial conditions is aimply a device to generate reasonable
starting value on the basis of data preceeding the projection period. One could
consider more involved attempts to capture initial conditions, such as beginning
with OLS estimates in 1959-12 and filtering backwards in time. Since the
statistica in this investigation depend only on estimates during the projection
period (after 1959-12), the results should not be sensitive to reasonable alter-
native initial conditions for the coefficients in 1953-7. Projection statisties
were generated for the one-, two-, three-, and four-step-~ahead forecast errors
for the period beginning in 1960-1 and extending through the end of the data.
Thus, for example, there were in each experiment 231 one-~step forecast errors.
The projection period was further broken down into the 120 observations in the

1960s and the 111 in the 1970s.
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Experiment A: The Adaptive Regression Model

In this specification the coefficient variation equation generates a

random~-walk constant, Let g, be the coefficient on the constant in the regres-

t

a

sion and partition B, as Bt = [BE]. The Adaptive Regression specification is as
~t

follows:

W

a
BE”] £ LY B =0 E(w,
t=1

2

tcw. (124)

o
[Bg] = [ WS) = 65

This model, which is wvery similar to one investigated by Coocley and
Prescott [1973], can be viewed as a mechanical version of the common practice of
treating the constant as an "add factor" in the equations of macroeconomic
models, In such models the coefficient on the constant is typically judg~
mentally adjusted whenever a pattern of positive or negative errors is perceived.

Note that with the Adaptive Regression specification forecasts are
obtained exactly as in the nonstochastic parameter case, by use of the chain
rule. Since EtB(t+k) = EtB(t) + Et( §1w(t+s)) = Ets(t), the estimate, E(t), of
g(t) is substituted for B(t+s), s:O,s;; .+ in the chain rule of forecasting. As
noted earlier, since multistep forecasts are nonlinear functions of the para-
meters, the chain rule does not give unbiased estimates of the mean of the
forecast distribution. 1In the case considered here with stochastic parameters,
even the assumption that the estimated coefficients are the true ones at that
point in time does not eliminate the problem. Nevertheless, the chain rule has
been used since unbiased forecasts could be generated only by the stochastice
procedures described in Chapter 3 and at considerable expense.

The value of ci in this experiment was set at 0., .0001, .QG1, .01, .1,
and .2 times the estimated variance of the OLS coefficient on constant. Root

mean square error statisties were generated for the two projection periods and

are presented in Table 1. Shown in Table 1 are results from Period 1, 1960-1
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through 1969-12, and Period 2, 1970-1 through 1979-4%. For comparative purposes,
the COLS RMSE statistics are given along with the Adaptive Regression Model
results. Notice that the OLS results are not identical with the constant
coefficient {zero variance) specification because in the later case the OLS
estimate is taken as the known initial condition and filtered over the estimation
period. If it had been taken as the initial condition at the beginning of the
projection period, it would be identical to OLS. Underneath the RMSE statisties
for the Adaptive Regression Model are given the ratio of these numbers to those
of the OLS model.

The message of these results seems to be that there are no consistently
significant improvements to be made in forecasting by adopting a time-varying
constant. The most improvement was shown in the 1960's projection period by the
interest rate variable and prices, Both variables showed a potential decrease in
EMSE of about 7 percent for the best specification of coefficient error variance.
However, had either of these sgpecifications been chosen in 1970 for use in the
following decade, the results would have turned out worse than OLS. In faect, for
the later period the largest improvement for any variable was only 3 percent
better than OLS.

Experiment B. The Random-Walk Parameters

The second specification of the coefficient variation egquation is

simply:
- - _ 2
Bt = Bp_q * W, E(wt) = 0 E(wtwé) = GstUwM. (125)

Each coefficient follows a random walk. The constant M matrix is taken to he
equal to Z 0[0, the estimated variance matrix of the estimation period OLS
coefficient vector. This specification is a special case of the third one (when

there ia no shrinkage), and the results appear as the last column of Table 2. In
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this table only the ratio tc OLS RMSE's appear, since the base period is the
same. -

The results of this experiment are similar to those of the first. A
possibly significant improvement in forecasting of prices is shown in the 1960s
with a reduction of 11 percent in the OLS RMSE. Just as in the previous
experiment, however, the improvement fails to remain in the later period.

Experiment C. Shrink to Mean Estimators

This specification involves a common adaptation of the Kalman filter
algorithm, A set of state variables is appended to the parameter vector. Let Bt

be the current parameters in the regression equation Yt = Xt St +V, . B 1is an
1x1 1xp px1 1x1

unknown mean toward which Bt shrinks over time, subject to a white-noise distur-
bance. The rate of decay is controlled by a parameter, d. The coefficient

equation is written as:

Bt d'Ip (1--d)°Ip B E(wt) =0

t-1 Wy

1]
+

{126)
— — ' _ 2
B 0 I 8 0 E(wtws) z SstowM'

|4 |%

The covariance matrix of this augmented parameter vector may be

partitioned as:

Atle Byt
ztlt =1 . (127)
2px2p Bt]t Ct]t

I take BO!O z op, and Ao]o z cOlo =M= Eolo* the {pxp) OLS estimate,
Making these substitutions into the Kalman filter algorithm, one obtains the

following:

Step 1: Form '

~ Bje-1 Bele
Zt‘t~1 =1 A = {128)
B

tfe-1 Cglt-
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ARt g pagt (=D ABy e 1#By g ]+ (1D Cp g qro M
By t-1t " DC g (g9
By g g1t DCqpeos
Ct-1|t-1
Step 2: Form
A Al Bilt
Bele  Ceje
~ n P Acje-1XtXebefeat Aee-1¥eXeBe] 1
Lefeat = RhpfeogXpsd)” | . .
Bejo-1Xe¥ehe)e-1 Bejr-1XeXeBE) e
Step 3: Form

By = @By_y ¢ (LT, + Ay XX (d8y_+(1-00B, )/ (130)

~

1a a 7 2
t-1 * Be|eXt (Y -X (a8, _,+(1-d)B, _,))/0. (131)

™w
(w4
1]
wi >

In making forecasts with this model one cannot simply ;ubstitute Et
into the chain rule, E(B, ) = a8, + (1-4)B, thus one substitutes dKﬁt + (158
for Bt+K'

The results shown in Table 2 suggest that the Shrink to Mean Estimator
does not generally produce improvements in forecasting. Neither do the results
exhibit the type of consistent pattern which might suggest directions in which
improvements might be obtained.

In the 1960's period a very small improvement in M1, Personal Income,
and the Commercial Paper Rate for different forecast horizons is matched with

larger increases in forecast errors for these variables in other horizons. For
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Pricea, the only variable for which there was sighificant improvement in the
ﬁandom Walk Parameter specification, all values of d less than one which were
considered led to worse than OLS forecasts at all horizons.

In the 1970's period more significant reduction in the RMSEs are
generated for Prices and the Commercial Paper Rate. There are also, however,
significant increases in errors of M1 and Personal Income.

In conclusion, while the experiment results were not entirely nega-
five, the overall absénée of a consistent positive pattern across variables and
across time periods, along with the small sizes of the improvements where they do
appear, suggests that the Shrink to Mean Estimator is probably not a fruitful

path for forecasting purposes.®

'
In several multivariate experiments results were obtained which

matched closely the univariate results reported here.



Footnotes

l/See, for example, Lucas and Sargent [1978].

g/The procedures described by Granger and Newbold [1977] illustrate

these problems.

3/

= An example is given in Sargent {1978].

EIThe proof for the univariate case is in Anderson {[1971] on page L19,

i/D(t) is an (nx1) vector function for which we estimate a (nxd) matrix
of parameters, C. For example, we may have a constant and trend, in which case d
=2, C= (CG » €4 ), and D(t) = Cq *+ Cqt.

nx1 nx1

é/This is shown for the case of fixed regressors in Anderson [1958],
Chapter 8.

7/

="I will not discuss these possibilities further, As discussed
earlier, asymptotic results are not particularly relevant to this investigation.
For a discussion of asymptotic results in the stationary case see Anderson
[1971], Anderson and Taylor [1976], and Ljung [1976]. For the nonstationary case
see Fuller, Hasza, and Goebel [1979], and Sims [1978].

Q/The program "Normal™ on the University of Minnesota computer system
wa3 used to generate the random errors.

g/The graphs were generated by using a moving average to smooth histo-
grams of the estimates with interval size of .002. The smoothing process causes
the distribution of the unconditional maximum likelihood estimator to slightly
spill over past 1.0, although there are no observations in that region. The
scales on the graphs vary so that the area under the curves equals 1.

lE)-/Fiidge estimation is usually performed after the data have been
demeaned and scaled so that X'X has unit diagonal elements. Swamy and Rappaport
[1975] recommend against this scaling in the context of univariate autoregres-
sion because "this practice results in a transformation of the original para-
meters." However, when the data vary in size, as they usually will in a multi-
variate regression, the uniform standard deviations of the prior distribution
corresponding to a standard ridge regression do not seem appropriate. The
solution to this problem to be developed here will differ slightly from the ridge
approach. Rather than scaling the data, we scale the size of the standard
deviations assoclated with coefficients on different variables in the prior
distribution, and whereas in ridge regression the scaling is according to the
standard errors of the independent variables, we scale according to the standard
error of each variable's residuals. The procedure is described in more detail in
the next section.,

ll/Perhaps the most difficult task in a Bayesian analysis is the con-
struction of a prior distribution which accurately captures the a priori know-
ledge of the investigator. While the prior which is described here necessarily
represents only my own opinions, it was developed with the aid of many helpful
suggestions from Chrigtopher Sims.



lg/Zellner [1971] has suggested the beta density function p(f) «

(1-8%)""2 uhen we know 18l < 1.
l-3-/See.=:mingl_w,r Unrelated Regression is discussed in a Bayesian context
in Zellner [1971], section B.5; and Leamer [1978), section 8.3.

1-li-/Zellner- [1971) deseribes this distribution on page 99.

13/Following the notation of Granger and Newbold [1977], an ARIMA
model specified as Yt ~ ARIMA(p,d,q)} refers to a process generated by

a(L)(1-L)3Y(t) = B(L)e(t) where e(t) is a zero-mean white noise, A(L) and B(L)
are polynomials in the lag operator of orders p and q, respectively, and d is an
integer,

lé/When actual values of ¥Y(t) are unavailable for some values of t <

T + m, then k-step-ahead forecast errors for some values of k will not be known
at the end of the projection period.

lz-/Thes»:a data, and all other data referred to in this paper, unless
otherwise noted, are the seasonally adjusted values published by the U.S.
Department of Commerce, Bureau of Economic Analysis, with revisions available as
of the end of the projection period.

lg/The results in this section were generated using the Regression
Analysis of Time Series, RATS, computer program written by Thomas A. Doan at the
Federal Reserve Bank of Minneapolis. -

lglAlthOugh the problem in this comparison caused by seasonal adjust-
ment, as shown here, is not large, two other problems were encountered which
prevented a meaningful comparison. The first problem wasz that a significant
proportion of the variance of the sequence of current observations on M1 is
eliminated by subsequent revision of the data. The time series of not seasonally
adjusted data available at the end of the projection period is smoother than the
sequence of current observations. For this reason, a meaningful comparison of
forecast errors would have required construction of different data sets at each
period in time. The other problem was that Federal Reserve forecasts of M1
growth are made on a weekly basis, none of the weekly forecasts are based on the
same information as is contained in a monthly data set, and the standard error of
forecasts decreases considerably with each additional week of information.

gg/See, for example, McNees [1975].

gl/Misspecification is used here to refer to the residual variance of
forecasts not accounted for by the first three sources. It is not intended to be
a measure of misspecification in the standard sense, that is, the degree to which
the specification of the model differs from the true underlying structure. If
the estimated model is not misspecified in the standard sense, then this measure
has an expected value of zero. However, if the model is misspecified, this
measure may have a nonpositive expected value.

g-2-/F'a:1r' plans to incorporate the correction for degrees of freedon
into a forthcoming version of this paper.



g-’:ySee the appendix to this section for details of the estimation

procedure.

gil-/I-k»'.-lpf‘ul suggestions in the construction of the priors menticned in
this section were given by Thomas Doan and Preston Miller., The ARIMA specifi-
cations used for comparison in the following graphs were constructed by Doan.

3§/A white-noise-form prior refers to a prior distribution which has
means of zero for all coefficients. A random-walk-form prior refers to the prior
distribution in which all means are zero except the mean of the coefficient on
the first lag of the dependent variable, which has a mean of one.

gg/Since their introduction (Kalman [1960]), Kalman filters have been
used extensively in engineering and control application.

§Z/One possible generalization is to specify nonzero covariances of Ve
and Wy Another possibility is to include other driving variables in the state

transition equation (117), leading to a systematic parameter variation model.
Specification of these types of models require considerable knowledge about the
structure of the system and are beyond the scope of this paper.
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