R. Townsend, Seminar

Nov. 12, 1979
210 Harkness Hall
3:30 p.m.

Medels of Money with Spatialiy Separzead igonts

3obert M. Towtsens*
Re7ised October 1979
Morks ris ?aper 7: '30
PACS Fine \ddagger :

anc
Federai Aeserve 3ank 2 : Minnezsolis

This paper presents three models abiet oxplafn the observation thar money is used in payment for comodities and barser is not prevalent. In each of chese models money is incrinsically useless, fasmuch as it does not encar directly into efther ufility functions or production frisctions, and incoaversible, inasmuch as م one stands ready to cocvert money fato ary hing else. M/ Moreover, money does not enter any of the models by way of legal restifctions'/ or by way of a requirement that comodities camot be acquired rithout it, a la clower (1967). ${ }^{3 /}$ Racher. money is explained in the serse that the following procedure is adopeed. Finst, the enviroment is specified carerully and complately-othe agencs of tive model, their preferences and endownencs, and mos: fuporiant, wio can comumitate mich wiom. It is then establisted tiar there exises a monetary equilibritun, that is, a souperinive equilibritu in which a fixed-supply morey has value.

It is widely accepted that money can=ot be explained in tifs sense in a standard, gezeral equiliortum model. (See, for example, tain (f,f65).) In a Walrasian model, at least, money canot Eacilitate exchange; fe nombnerary compertrive equilibria are Pareto potinat. Note again thart a distimetion is naintained here betreen money, siat nosey tiac is, and privare credit.) Thus, to get money twe a wodel someting zust inioioit the operation of markats. ${ }^{\prime \prime}$ Moreover, if termal condisions are to je avoided, =iniz fust be fininize.

 the gert gereratior-umbory fadividuals amant trade. and in versions of this overlappizg-qenerations model, chert does exist a monerz=7 equilibzin, one

 gomeçasiving constiaines or tie holiteg gi noney balazess. Yet one wonders
whether the properties of the overlapping-generations model carry over to alternative models wilci explain money in the above sense.

In the models of this paper markets are precluded in anocher way, by spatially separating agents. Infinitely-Ifved agents who tiscount future over present consumption are allocated over time into distinct markets or islands. The crucial idea here is that markets must clear on each island in every time period; chere can be no communication across islands, that is, there is 0 central market or exchange system. Cartainity this way of decentralizieg an economy is noc aew Lucas (1972) uses such is!ands to explain the movement of economic aggregates. ${ }^{\text {I/ }}$ More to the point, the explicit pairing of agencs is a schene used in various recent microeconomic approaches to money, including Start (1972), Ostroy (1973), Feldman (1973), Ostroy and Starr (1974), and Uarris (forti). Yet, for the most part, these approaches are not really dynamic equilibsium theortes. An important exception is Barris, but he is concerned with comodin money, not outside fndebedness.

In two of the models of this paper, tie rurnpike nodel of exchange (Section 2) and Lucas' version of the Cass-Yaari (1966) model (Section 4), there exists a monetary equilibrium, that is, a competitive equiliorina wish valued morey. So, as ciaimed, these models explain money. And, as in the overlapping-generations construct, this monetary equilibrium improves upon che zonmonetary equilibrium (autarky). Unlike the overlapping-generations model, however, the monetary equilibria in these models with spacially separated agents a=e nonoptian and are assoctated $\begin{aligned} & \text { th } \\ & \text { binding } n o m e g a t i v i t y ~ c o n s t r a i n e s ~ o n ~ t h e ~ b o i d i n g ~ o f ~ m o n e y ~ b a l a n c e s ~\end{aligned}$ Thus the decencralization of spatial separation is zot sompletely overcome wiry money. $\underline{6} /$

The Ergument as to ring no optimal nilocation caz je supported as a morecarf ecciaijoriom in these sodels is Eairly incuitive. Suppose ili agents are
of the same age and all discount the furcie at the same rate, as in the turnpike model and Lueas' version of the Cass-Yaari model. Then, fin an optimal allocation is to be supported, there must be a rate of deflation equal to the commen discount rate. But, in the absence of taxes, such a deflation is inconsistent with individual maximization, as seal wealth (teal money balances) would be unbounded. That no stationary moneta:7 equilibrium can be optimal is an immediate corollary.

As Grandmont and Youness (1972, 193) point out, this latter conclusion appears frequently in the literature (see, for example, Clower (1970), Friedman (1969), johnson (1970), and Samueison (1558), (1969)) winere she argument turns on a divergence between the positive margizal utility of real money balances and the zero marginal cost of creating them. Grandmont and youness are critical of this literature, and they are not alone; flower (1970), for example, argues quite forcefully that tiese welizare questions zust be addressed in a model which makes explicit the monesary exchange process. Grandmont and Youness do establish the aforemencioned conclusion sigorousiy in a general equilibrium, monetary econony. Yet, as tie authors noce, even in their model money is introduced ... "in a very cruce way, by imposing contraints on t=ansactions". That is, ia contrast to the modeis of this paper, their's is not a nocel wich explains money. In this respect, at least, this paper may be viewed as an important extension of Grandmont ans Youness and of this liEerature.
 spatialiy separated agents of this pape: can also produce Eriedman's (1969) conciustons on the optimal quantity of mone?. That is, optimal ailocations can je 3upporzed in an interventionist monetary equiliorium, with iumpoun taces, in which the rate of interest on money ec:als the common discount fate and in wicin
agents are satiated with money balances, i.e., che nonnegativity constraints on money balances are nonbindigg. (Also see Grandmont and Youness (1972), and Bewley (forth).)

Speaking rather loosely, the overlapping-generations model overturns these welfare results by pairing agents of different ages and therefore different rates of discount. ${ }^{7 /}$ This is argued rore fuliy in Section \dot{j}, where the turnpike model is modiffed to incorporate finitely-lived agents and hence becoures an overlapping-generations model. aopefully an essential feature of the overlapping-generations model is revealed.

As noted above, monetafy economics necessarily invoives the economics of infinisy. in che overlapping-generations nodel there is an infinite number of zenerations, though a finite aumber of agenrs alive at any one date. In the curnpike model, and in the Cass-Yaari model presented here, inere is an infinite numer of agents alive at any one date. This specification ensures that no private debt is traded, so that its exclusion is endogenous, i.e., not imposed by the modeler. Section 5 offers some preliminary comments on privata debr (insf.de money) in the context of a modizied tumpike model, one without the contemporaneous inzinity.

Finally, a caveat is in order. The intent in what soliowsins to uncerstand the implications of various exchange structures for monetary equilibria. Thus, speakizg rather loosely, pref̃rences and endowments are held fixed across models as the exchange structure is variad. To this end, yaxinum generality is not pursued wishin the contert of eaci nodel. Agents are assumed tiroughout $=0$ have preferences and endownents of a very special form. Yoreover, eertain strong symerfy conditions (on the class of ellecsefons under consideration) are tmosed exogenousif, without elacoration. Fiza!'if \ddagger may be moted that the models of this paper are success
it remains an open question as to whether these models can approximate economies in which moral hazard and bankruptcy play a crucial rule, as 3runner and Meltzer (1971) have emphasized.

Figure i: The Turnpike ModeI

Finurg 2: Ootintal hinections in the Itroptke Medel

 er isiands in each period of tiz tife. The exegenotiz ziisczoion procedure is

 of the zodei rinist alternates setieen zens and one datt. it anj time 2030
 gntewment of zerc. The consumption good canmot be siorst.

 aroswe indicata the draction ot :ravei, and the spixss inticate the arksts.

 Each agent moves foraard one mariket in esci period. ilso, chese markets are iso F Lated one from another; shere can be oo :zansaction or commaication among them at any time.

Pareto fagrovien binateral trade; there is only one consumpien gocd, and zore is profarrec so less. Ene may ask, O course, whether borrowing and lemding might not incrove matears. Section j below is devoted enturely to this questioc in z sidghtiy gociffec sortext, but it should be ncted here that, in a sense shich will be made precise, there can be no private debe in the present model. For consider an agent at time t who has zero units of the consumption good. Such an agent might wish to issue an IOU, to be honored in better times, when he has one unit of the consumption good. Similarly, the agenc with whom he is paired, who has one wat, might be inclined to accept such an 100 . Yet the model is constructed in such a way that the $I O U$ can never be redeemed by the issuer; the pair sill never meet again, and the purchaser of such an 100 can oniy pass it along to an agenc "behind" the issuer. Thus if one takes as a deinang characteriscic of private debt that it ultimately be redeemed by the issuer, there can be no private debt ia Ehis model. (/
 sinaracterize Iz-sto opti=ai nilocatises. Zor inis purjose a strocz symetry concition is isposed, vat in any ailocaticn, agents samer je disitngisined vy

 hereafter reforred to as agents of tpe d. a sinizar restrietien iz olaced on those winc begin inth nee uniz, agonts of fre 3. It bears rageaning jers that

Now let c^{\prime} jenote the number of units si sonsumption of an asent on
 (2.1) $\quad c_{t}^{A}+c_{t}^{3} \leq 1, c_{t}^{i} \geq 0, e_{t}^{3} \geq 0 \quad a \geq \geq \geq 0$.
(in gliccation is said to be interior if consumption ts utrictly positive for each Bsent type in each time period.) it maj be assumed ittiout loss of eeneraithy in what iollows that resources are finy utilized. Then to detarmine an interior Pareto optimal allocation, it is enough to maximize a weighted average of the utilities of the two agent types, subject to the resource constraints, as is established below. This yields

Proolem 1:

$$
\left\{c_{t}^{A_{t=0}^{\infty}} \max _{t=0}^{\left.w_{t}^{3}\right\}_{t=0}^{\infty}}\right.
$$

subjecs :0 (2.1) where $w^{A}>0, i^{3}>2, \pi^{A}+i^{3}=1$. Siecessary and sufficient :Urs=-טrfer senciさもions (or problen (i) are

 7iedes

(2.A) $\quad a_{t}^{A}=\lambda, \varepsilon_{t}^{5}=:-\lambda, 0<\lambda<\cdot \quad \equiv 11=0$.

secessary for oprtanitit foliows frou the ohvious fact that if condition (2.3) is not sazisitied for some jericds tanc T, Ehen there is a ?areto superior feasible ailocation. That this concition is sufficient is aiso covicus. For suppose Etere exists \exists :easiole 3ivocation which is Pareto superior. Then i= would satisfy constraine (2.1) and increase the raile or the objectire function in protlem (1), a contradictioc. Gereaiter, then, reforence will be made io an inzerior ontimu λ in which both agents receive constant consumptior.

מise question gay now be ratsed as to whether optimal aliocations ana ye
 fiscuss carefinily miat are meant by inat zoney anc competitive jarksts in the cortext of this mocel. a 1 nit of tiat goney is inagined to be a piysieat somredi=7, say a piece of saper, which may be carried sostiessiy by the isents es -hey travel among isiands and used in exchange. ha a coumodizy the soock of it in tise gossessicc oi acy :=ader at ary :ine sarnot be zegative. On each tsiand
 zeney oun be exthanged for the consumpton gecd at a specifised mea. That is, 1sents こake twe grise of tee consumptor gecc as siven and maxnine urixito by sinoise op the amcurt io consume and the acount of money balacesa so carfover

 assumed to be Einizz and strictly positive. Aiso, let y_{t}^{2} denote che aumer of

z_{c}^{i} denote the number of units of a lump-sum tax on money balances (or subsidy, if negative) on agent type i at the begiming of period t, and y_{t}^{i} denote the endowment of agent type i at time t. Then taking as given the sequence $\left\{p_{t}\right\}_{t=0}^{\infty}$, $\left\{z_{e}^{i}\right\} \underset{t}{\infty}=0$ and initial money balances M_{0}^{i}, each agent of type i is confronted with

Proclem (i):
subject to

$$
\left(0_{t}\right)
$$

 2inding. issuming winct: loss of generzinty that the budget consiraint iv,
 tine covisus suEsziturise for the ci, one ootains necessamy Eituer condizions for a naxinum
(2.इ) $\quad-\frac{s^{t-i}\left(t e_{t-1}^{t}\right)}{p_{t-1}}+\frac{3^{t}+\left(c_{t}^{i}\right)}{p_{t}}+\theta_{t}^{i}=0 \quad$ alt $: \geq i$
 sn =oney baiances, the: is,

$$
\therefore \geq 0, x_{6}^{i} \geq 0, x^{i}=0
$$

$$
\begin{aligned}
& c_{t}^{-} \geq 0 \text { a1: }: \geq 0, \quad M_{t}^{1} \geq 0 \equiv \because t \geq 0 \\
& 2_{5} c_{t}^{i}+M_{5+i}^{i} \leq p_{5} 7_{0}^{i}+n_{t}^{i}-z_{5}^{i} \quad a!\geq 0
\end{aligned}
$$

Thus,
(2.5) $\frac{\sigma^{\prime}\left(c_{t-1}^{i}\right)}{3 J^{\prime}\left(c_{t}^{i}\right)} \geq \frac{p_{t-1}}{p_{t}}$ all $t \geq$,
where (2.6) aust hold as an equality if $M_{b}^{i}>0$ and (2.6) must hold as an
 fiat money spent on peried t-i consumption exceeds the marainal utility of a undt of fiat mocey spent on period $=$ consumption and thers is no more itat money to spend in period t-i.

A competitive equilibrium with raiued flat money may now be derinned.
Definition: A zonetary equinibrium is a sequence or :inite positive prices $\left\{\rho_{t}^{*}\right\}_{5=0}^{\infty}$ and sequences of consumptiens $\left\{c_{t}^{i *}\right\}_{t=0}^{\infty}$, money baiances $\left\{M_{t}^{i *}\right\}_{t=0}^{\infty}$, and lump-sum tares $\left[z_{t}^{i *} \mathfrak{i n}_{t=0}^{\infty}\right.$ for each agent type $i=A$, 3 such that
4) (naximization) the sequences $\left.\vdots \sum_{t}^{i *}\right\}_{t=0}^{\infty},\left\{M_{t}^{i p} i_{t=1}^{\infty}\right.$ solve problem (i) relatize $0\left\{p_{t}^{*}\right\}_{t=0}^{\infty},\left\{z_{t}^{t_{t}^{*}}\right\}_{t=0}^{\infty}$, and $M_{0}^{i *}$, and
ii) (aricet cieari-g) $e_{t}^{A^{*}}+c_{t}^{B^{*}}=1$, ail $=\geq 0$.

One may now ask wicether sptimal aliocations sar be supportad in 三 =cnetary equilibria without interventisn. The answer is sumarized in
?ooposition 2.1: No interior sẹtimum λ an be supported is a zonetary

Proop: The proof is by contradiction. Thus suppose that the aileeation $c_{t}^{A}=\lambda, c_{t}^{3}=1-\lambda, a \geq 1 \geq 0$, can be supported $i=$ a gonetary equilibriun Withous intemrention. With $z_{t}^{i *} \equiv 0$, with $7_{5}^{1}=0$ eor t even and $7_{t}^{3}=0$ err : odd, and with $J^{\prime}(0)=m$ it is ciear that the nomezativi=y sonstraint on zoney baiances aannct be bindins for agent tfpe i for acoises zade witen is odd or for

$$
\begin{array}{ll}
\frac{T^{\prime}(\lambda)}{3 U^{\prime}(\lambda)}=\frac{P_{-1}^{*}}{P_{E}^{*}} & t \geq 2, \text { even } \\
\frac{T^{\prime}(1-\lambda)}{3 D^{\prime}(1-\lambda)}=\frac{P_{-1}^{*}}{P_{E}^{*}} & \quad: \geq 1,=\operatorname{ecd} .
\end{array}
$$

It follows that

$$
\text { (2.7) } \quad p_{t}^{*}=S p=-1 \quad \text { ait } t \geq i \text {, }
$$

the., the mate of deflation must be i-2. Now consider the evolution of money balances of agent type 3 given the prise sequence $\left\{\sum_{0}^{*}\right\}_{t=0}^{\infty}$ and the siocizfac
 units of tat money, acquires p on units $i=$ period zero, and spends p ($1-\lambda$) units tn period one. Thus
(2.3) $\quad x_{2}^{3 *}-x_{0}^{3 *}=\rho 0 \lambda-p_{i}^{*}(i-\lambda$.
 of (2.3), is nonnegative if the rizht-hand side is nonnegative. Substituting $\therefore \because m$ (2.7), tie $=$ Ight-hand side is nonnegative if
(2.7) $\quad \frac{i}{i-i} \geq 3$.

Zn Pact, one may reading verify that the increment to money batareses is ocr-
 caicuiatices establish twat the increment to genet jaiarces ta nonnegative for agon: type A from : to $\mathrm{t}+2$:or $\operatorname{3i=}:$ odd $: \equiv$
$\therefore 2.0 ; \quad \frac{1-1}{\lambda} \geq 3$.

a strist fecuaisty for any raiue of i betaeen zaro and sue. That is, at least one asent tjpe will be accumblating noney talances over inmein tae above senge. But then this cannct je an equilibrium. Eer if (2.9) holts as a strict inequal: \#7, for sxample, agent E7pe 3 could spenc these "excess balances" at $t \geq 1$, t Ede, 3ad f-prove upan the consumption sequenes $c_{t}^{3 *} \equiv 1-\lambda$. This compiotes the proof.

Thus if an optimal allocation is to be attained in a monetary equilibritu, the nee of deflation must be 1 - 3 and, sonsequently, there aist be some intempention by way of taxes and/or subsidies. That et least some sptimal allocations an be supported 12 thts ray is established in

Pmogosizion 2.2: any intarior optimum λ with $3 \leq[\lambda /(i-\lambda)]$ and $3 \leq$ $[(i-\hat{\lambda}) / \lambda]$ can te supported in a menetarg equilibritu wish rate of der゙ation
 .
?ncf: See the appendix.
Eipen propositions (2.1) and (2.2) one may well ask whether there exist

 money baiances play an inportant role.

 sptinai ainecatioc and bence requires scme tatervention.

Nanipujaisct ce (2.19) 7telts
(2.12)

is (2.:2) hoids :sr hoth i,
(2.13) $\frac{\pi \cdot\left(c_{t}^{d^{*}}\right)}{J^{\prime}\left(c_{t}^{d^{*}}\right)}=\frac{J^{\prime}\left(c_{t}^{z^{*}}\right)}{J^{\prime}\left(\varepsilon_{\tau}^{z^{*}}\right)} \quad \mathrm{a}: 1 t, \geq 0$.

 :0150us : Ros proposttion (2.1). Thig cceristas the proct.

The searsin for a anninterventionist monetary equitibrtiu is aiso Sacinitatad by the soserratitn that, rovaing speaking, a tife srend to prices,

3rgocsisish 三.

$$
z_{t}^{i} \equiv 0, z_{t}^{*} \equiv z^{*}>0 ;
$$

for agent $A, M_{0}^{A^{3}}=p^{3} n^{3}$, and

$$
\begin{aligned}
& c_{b}^{A^{4}}=\text { a* }^{*}, M_{t+i}^{A^{*}}=0, \theta_{t+i}^{A^{*}}>0 \quad t \geq 0 \text {, seven } \\
& c_{t}^{A}=c^{*}, A_{t+1}^{A^{*}}=p c^{*}, \hat{A}_{t+1}^{A^{*}}=0 \quad t \geq 1, t \operatorname{cod} ;
\end{aligned}
$$

: or agent $3, w_{0}^{3 *}=0$, and

Eigure 4: The Turapise's Yonetary Equilibrium

$$
\begin{aligned}
& c_{t}^{3}=c^{*}, w_{t+1}^{3 *}=p_{0}^{* * *}, \hat{c}_{t+1}^{3 *}=0 \quad t \geq 0, t \text { eren } \\
& c_{t}^{3}=c^{* *}, w_{t+1}^{3}=0, \theta_{t+1}^{3}>0 \quad t \geq 1, t \text { odd }
\end{aligned}
$$

and where c^{*} and $c^{* *}$ satisfy

$$
\frac{\Pi^{\prime}\left(c^{*}\right)}{3^{\prime}\left(c^{* *}\right)}=1, c^{*}+c^{* *}=i .
$$

The equilibrixm ailocation is soncptimal, but Pareto suc̣eriser to autarkh.
?roof: See the appendix.
The proof of proc̣osition (2.4) utilizes tine fact tizat for agent vipe A
$\therefore 2.14) \quad g_{t} A_{t}^{A}-g_{t+1} c_{t+1}^{A}=p_{t+1} 7_{t+i}^{A}+M_{t}^{A}-M_{t+2}^{A} \quad: \geq 0$, t even
(2.15) $\quad 9_{6}^{A} \leq x_{6}^{A}$
$\bullet \geq 2$, ever
winerg (2.14) is the money ba!ance accumuażon ※quaたion, and (2.!

 (2.i6) $\quad g^{i} a^{i}-p^{2} a^{2}=g^{2} z^{2}+M-M$,
(2.i7) $\quad \rho^{i} e^{i} \leq M$.
 somucdiz= model, and (2.17) is a semi-Cover constrainc, tiaz the valuation cf consumption of ccumodity one not exceed inizial mcrey jeianceーenis formuation
 \therefore ory
(2.iE) $\quad z^{2} a^{?}-p^{2} c^{2} \leq M$,
trat the sotai vaiuation of sonsumption se jounded jy initiai meney sajances． gonstraint（2．18）is not derived envireig from the technolesj of exchange． Z＝posed in actition is the requirement thez egents jid iz competitife narkets Cor thei－cwn production．That is，agent type A at ifie toi as a producer is required to place ail production 7_{t+1}^{A} on the market and pay ash in adyance for any esnsumption c_{t+1}^{λ} ．

Motivatad by the above discussisn，consider the foliowins
 gosi＝さre prices $\left\{\begin{aligned} *\end{aligned}\right\}_{t=0}^{m}$ and seguences of sensumptions $\left\{\varepsilon_{t}^{i *}\right\}_{y=0}^{m}$ and meney baiances $\therefore x_{t}^{A^{*}} i_{t=0}^{\infty}$ ：or eacin agent iype $1=A$ ， 5 sucn that

1）maximization for trpe d－the secuerces $\left.\left\{e_{t}^{\lambda^{*}}\right\}_{t=0}^{\infty}, i M_{t}^{A^{*}}\right\}_{t=1}^{\infty}$ solve
subject to

$$
\begin{aligned}
& p_{t}^{*} a_{t}^{d}+p_{t+1}^{*} a_{t+1}^{d} \leq n_{=}^{2} \quad=\geq 0,=\text { even } \\
& x_{t-1}^{d}=M_{t}^{2}-\sum_{t}^{3} 2_{5}^{2} \quad=\geq 0,=\text { even }
\end{aligned}
$$

Sitrex $M_{0}^{d^{*}} \geq 0$ ，
\therefore 和
subject こo

$$
\begin{array}{ll}
x_{t+1}^{3}=x_{t}^{3}-p_{t}^{3} c_{t}^{3} & t \geq 1, t \text { odd } \\
p_{t}^{3} c_{0}^{3}=p_{0}^{3} t_{0}^{3}+n_{0}^{3}-n_{1}^{3} \\
P_{0}^{3} c_{0}^{3} \leq x_{0}^{3}
\end{array}
$$

given $M_{0}^{3 *} \geq 0$, and
1i1) market clearins $-c_{t}^{\lambda^{*}}+c_{t}^{3 *}=1,: \geq 0$. This leads to

Proposition 2.5: If thers exists a Clower-type monetary equilibrium

 with constant prices, i.e., with $F_{\underline{*}} \equiv p^{*}>0$, and with a symetric consumption sequence; t.e., wath $c_{t+1}^{3 *}=c_{t}^{A^{*}}$ all $t \geq 0$, then $c_{t+1}^{3 *}=c_{t}^{A^{*}}=c^{*}$ and $c_{t+1}^{A^{*}}=c_{t}^{3^{*}}=$ c** for $=\geq 0$, $=$ even, whers $\overbrace{}^{*}$ and $c^{* *}$ are defined in proposizion (2.4). This ailocation is nonoptimal but Parsto superior to autarks.Proof: The secessary cenditions for a maxizum fnciude

$$
\begin{aligned}
& 3^{E} J \cdot\left(c_{t}^{A^{*}}\right)-\hat{F}_{t}^{A} 9^{*}-Y_{t}^{A} P^{*}=0 \\
& t \geq 0 \text {, } t \text { even } \\
& 3{ }^{3} 3 J^{2}\left(c_{t+1}^{d^{*}}\right)-e_{t}^{A} p^{*}-r_{2}^{1} p^{*}=0 \\
& =\geq 0 \text {, : aven }
\end{aligned}
$$

(2.19) $\frac{J^{\prime}\left(\varepsilon_{t}^{\lambda^{*}}\right)}{2 U^{\prime}\left(\varepsilon_{t+1}^{i^{*}}\right)}=1 \quad \sum \geq 0, ~=$ even.

Similarit :or agane ifpe 3

Mariset ciearing anc the sfumet:7 ifpothesis inply

zarket siearing $c_{c}^{3^{*}}=c^{3 *}$ ziso．It is obvicus that this allocation is non－ op：土nal．Ncte also that for agent ype d，for exampie，the sonsumption pai－（ 0^{*} ， e＊＊）dcminates the endoment pain（ 0,1 ）in seriods（ $t, t+1$ ）sor $t \geq 0$ ，t even． This completes the proof．

To be coted here is that the impositior of the full Clower constrai＝t （2．18）reverses the consumption sequerces Erom those of proposition（2．4）．Tet in Ehis redel the＂anterrenticn＂implisit in the Clower constraint is not enough to attain optimal allocations．

In closing this section ti may be roted that as either the discount rate goes to zero or，equitaiently，as twe erecuency of transactions（gatrings） facreases，the turnpike nodel somes close to producing the welfare resuil ot the overiappins－generattons sonstruce，that thers existz an optinal norintamen－ tionisc acnetary equitibrium．To see vits，sota，for exampie，that the amount of ：axa：さen needed to supocrt the oc̣tinal ailocation $\lambda=1 / 2$ goes to zoro as $彐$－，

 evaiuaze sensumption patis． 10 ／

 zocel of Samueison [i958]; as is wel: kent, the overiapoing-generatiens model

 iend to the differont izpliations of the two zodels. The intent of this secticn, then, is to בodify the turnpike acce: to zake ti zore comparabis io the standard overlapotng-generstions construct. Futeias inis another iay, the overlapping-geceraticns zodei ts generaiszed; iz so coing, its esseñiai feszures are -evealed.

The oovtous modiefcatien of the tumpike medel procuces tian Iodel
 ards. Eare oce agyt is jorn in each perice $a=$ the beginntag of the eastern and western routes, ank sach agent lifes four pertacs. More, zenes aget 0 and 3 periods are peifect, as are agents aged 1 ard 2 periods.
?reliminary vork itith vhis model indicsted tha: an optimei aliecation

 socei cos'

Figure 5: 1 Truncated Turnpike

market 0 market i Figure 6: Generainied Ofertappins Generations
ds in the turnpike model, each of a countabiy inftnite number of azents Eaces an endowment sequence of the singie nonstorable consumption good over ais infinite liffetime which aiterates between one and zero. Yet here ail agents are not of the same age; one representative trader is born in each period t, $=\geq 0$, and begins life with an endowment of one unit. Eack agent is again ailocatad fato one of a countably infinite number of spatially distinct markets in each period of inis life, but ters the allocation procedure is such that each agent is saired with an agent who is either one period older or one period younger. Fisuire 5 iliustrates the scheme: The arrows indicate the direction of "travel," and the numbers on the rizhe of mariset spikes indicate the endowment of an agent whose age is indicated on the left.

For our jurpose the escncmy rill be conceivet of as beginning at tine $t=0$ but populated with egents born at times $=-\infty, \dot{a} \geq$. Thus at ixze $=0$, isiand $k=\{/ 2, j \geq 0, j$ ever, is ininabited with to (representative) agent3, one
 endommen of zers units. At $=$ ine $:=1$, ene new (:ecpresentatite) agent is born
 on. Noce tiat if agents were to Iive tio periods oniy, zttention souid be restricted to mariket zero aione, an ecscoff mich ts identicai to the simpiest two-perted overiapping-generations nccel. As wili be shown, the presenc gensra’izaticn meains she cearacteristies cf that econcmy.

Is in the inmpike zodel, ther is a sense in indch thers can be 10 pritaee debt in this model. Here, unlike the tumptike model, ugents meet each other :nf:ニitesif often; an agent born at :ine t is paised with an agent bcron at tife toi mhen the :ormer is of aga $0,2,4, \ldots$, and an agent born as tine t is
 when they gees, each of the pafe tas the same relatiry endowuent jcsitien. an
 ann gever be receemed by the fssuer-he win beve zers untss rinen the gato zests again。

$$
\begin{equation*}
c_{j}(t)+c_{j+1}(t-1) \leq 1 \quad t \geq 0, j \geq 0, j \text { even } \tag{3.1}
\end{equation*}
$$

$$
c_{j}(-h)+c_{j+1}(-i-1) \leq 1 \quad \leq \geq i, j \geq h, j \text { even. }
$$

It will be assumed in what follows, without loss or generミ1ity, that these constraints aust iold as equalities.

The next step is to define ?areto optimal allocations. For this purpose, a strong symmetry condition is impcsed, namely, that agents of identicai ages be sreatad identically, even though they an be distinguished by birtadata. That is,

$$
\begin{equation*}
c_{j}(t)=c_{j}(\tau)=c_{j} \geq 0, j \geq 0 \text { ail } t, \tau_{0} \tag{3.2}
\end{equation*}
$$

Then an aliccation $\left\{c_{j}\right\}_{j=0}^{\infty}$ is said to be o0:imal if there does not exi3t another

$$
\begin{equation*}
\sum_{j=n^{i}}^{m}-c_{j}\left(c_{j}\right) \geq \sum_{j=a}^{\infty} g^{j-h_{j}}\left(c_{j}\right), n \geq 0 \tag{3.3}
\end{equation*}
$$

 (3.3) represent tie utivity of one agent born at time $t \geq 0$, anc ior h $\boldsymbol{y} 0$, tie
 taken into ヨcsouns.

It is acw claimed that the solution $\left(e_{j}^{7} j_{j=0}^{m}\right.$ of the foliowing probiem is cptimai in tine above sense.

Problem 2:

$$
i c_{j} \prod_{i=0} \sum_{i=0}^{\infty} \sum_{i}^{\dot{4}}\left(c_{j}\right)
$$

sub:es: :~

$$
s_{i}-s_{i+:}=: \quad s_{i} \geq 9,: \geq 0 .: \text { ever. }
$$

To estabific the clatm :ota that, tue 0 the ine separabie saturo of the

$$
c_{j}^{*}=c^{*}, c_{j+1}^{*}=e^{* *} \quad \pm \geq 0, \text { : even }
$$

wher:

Now suppose there exists a feasible aisiccation $\overline{i c}_{j}^{j_{j}}{ }_{j=0}$ winict Parate domizates
 consumpion must se increasec for at ienst one eiement i_{i}. Suppose $i \geq 0$ is

 worse otr, ま.e.,

$$
J\left(\bar{c}_{i}\right)+3 u\left(\bar{c}_{i+1}\right)<\sigma\left(\varepsilon_{i}^{*}\right)+\operatorname{sU}\left(c_{i+1}^{*}\right)
$$

 soncensati=s cianges eisewEere. Tis ss=acissines ree ciais.

Eurther, there exdst monetary ※quilibria witis infiation and lump-sum subsidization mhich are noncptimal. Analogues of these results could be sought here. instead, attention rif: be limited to jeneraitzing the well-icnown proposition mentioned at the beginaing of this section, that there exists a noninterventionist monetary equilibrium which supports the above described optimal allocation.

To derine a monetary equilibriim some addizional nctation is needed. Lat j_{6}^{k} denote the prises of tice consumption gecd in maricet k at tine t, $k \geq 0$, P 20 . Let $M_{j}(t)$ denote the money balances held by the agent born at tiae t at the beginning of period j of his life, ciosen at age j-i. As atzenticn is restrictad to nonigtermentionist squilibria, no notation for limp-sum eaxes is ceeded. As before, eacin agent takes initiai money baiances and the iacuence of : Inure grices as gizen and maxtmizes utility by cincice of the sequences of money jalances ard socsumetions over kis infinitee lifetine. Fins, ion an agenr sorn at tine $=\geq 9$, consider

Problem :

$$
\left\{a_{j}(t)\right\}_{j=0}^{\infty},\left\{\underline{n}_{j}(t)\right\}_{j=1}^{\infty} \sum_{j=0}^{\infty} 3^{j} \dot{j}\left\{c_{j}(t i j\right.
$$

3:טjјect $=0$

$$
c_{j}(z) \geq 0, M_{j}(z) \geq 0 \quad j \geq 0
$$

$\left(z_{j}(z)\right) \quad \sum_{j+j}^{i z} \bar{J}_{j}+M_{j}(t)=p_{j-i}^{k} c_{j}(t)+M_{j+i}(t) \quad \dot{j} \geq ?$
giten

$$
x_{0}(t) \geq 0, k= \begin{cases}\frac{i}{2} & i \text { aran, } \\ i \geq 0 \\ \frac{(i-1)}{2} & i \text { adc, }: \geq i\end{cases}
$$

Problem -n:

$$
\left.i c_{j}(-c)\right\}_{j=n}^{\infty} \max _{\left\{m_{j}(-n)\right\}_{j=c+1}^{\infty}}^{\sum_{j=i}^{\infty} z^{i-n}\left(c_{j}(-n)\right]}
$$

subject to

$$
c_{f}(-a) \geq 0, M_{j}(-a) \geq 0 \quad j \geq h
$$

$\left(b_{j}(h)\right) \quad p_{j-a_{j}}^{k}+M_{j}(-a)=p_{j-c_{j}}^{k} c_{j}(-h)+M_{j+1}(-n) \quad j \geq b$
given

$$
M_{a}(-a) \geq 0, k= \begin{cases}\frac{1}{2} & j \text { even, } j \geq h \\ \frac{(j-1)}{2} & j \text { oecd, } j \geq h .\end{cases}
$$

One may sow write out ismail the :clewing
 prices $\left\{p_{t}^{k^{*}}:_{t=0}^{m} \text { for each market } k \geq 0 \text {; sequences of consumptions }!i_{i}^{*}(=)\right\}_{i=0}^{\infty}$ and
 consumptions $\left\{a_{j}^{*}-\infty\right) \vdots_{j=i}^{\infty}$ and =coney balances $\left\{M_{j}^{*}(-i)\right\}_{j=i}^{\infty}$ for tie agent bern at sack $\because \pm=e-i<0$ such that
 solve problem = siren Mf(:),
11) maximization :cr agent -in - the sequences $i\left(c_{j}(-n)\right)_{j=i}^{\infty}$ and

iii) market steering -

$$
\begin{aligned}
& c_{j}^{*}(t)-c_{j+i}(t-i)=i \quad=\geq 0, \pm \geq 0, \pm \text { even },
\end{aligned}
$$

To eharactarize one of the zonetary equilibria of this model, return for ミ momest to problem (t). Disferentiating with respect to $M_{f}(t)$, familiar necessam conditions for a maximum ars cbtained:
(3.4). $-\frac{a^{j-1} J \cdot\left[c_{j-1}(t)\right]}{p_{t+j-1}^{x}}+\frac{s^{j} J \cdot\left[c_{j}(t)\right]}{p_{t+j}^{k}}+f_{j}(t)=0 \quad \pm \geq i$
where $\theta_{f}(t)$ is the nonnegative Lasrange multiplier associated with the constraint $M_{j}(t) \geq 0$. Expression (3.4) 7ields

$$
\begin{equation*}
\frac{J^{\prime}\left[c_{j-1}(t)\right]}{3 U^{\prime}\left[c_{j}(t)\right]} \geq \frac{p_{t+j-1}^{k}}{p_{t+j}^{k}} \quad j \geq 1 \tag{3.5}
\end{equation*}
$$

whers equality prevails if $M_{f}(t)>0$. As before with $\mathrm{T}^{\prime}(0)=\infty$ and $\mathrm{y}_{\mathrm{f}}=0$ for $j \geq 1$, j odd, it is obvicus that equality Iust provain for $\mathrm{j} \geq 1, \mathrm{j}$ odd, and 21 i $i>0$.

Now suppose the optimal ailocation $c_{j}^{*}=c^{*}, c_{j+i}^{*}=c^{* *}, \dot{i} \geq 0, j$ even,
 equa:i:7,

$$
1=\frac{J^{\prime}\left(c^{*}\right)}{3 J^{\prime}\left(c^{* *}\right)}=\frac{p_{t}^{0^{*}}}{p_{t+1}^{J^{*}}} \quad \text { ail } t \geq 0
$$

 is, the prise in zariket zero zust remain constant over time. A sisilar argument पíelts the :act that the price of each aariset $k \geq 0$ Iust remain constart over tine. Mcreover, suppose (3.5) were to boit as an equainty in suct an aquititeriu For \ddagger aven as rei. (That is, suppose the zonnegativicy ennstajnts on =oney belames were sever binding.) Fher with $j=2 \mathrm{fn}$ (3.j) as ar squaiity,

$$
\frac{1}{S^{2}}=\frac{J^{\prime}\left(s^{* *}\right)}{S^{\prime}\left(s^{*}\right)}=\frac{p_{t+1}^{0 *}}{p_{t-2}^{i *}} \quad a: 1 \geq 0
$$

time $=$ noves across markets, from market zero at tige toi to market one at tine
 ミcross any tro adjacent zerkets ior ant tize sericc t.

Titu it may be gressed that the eprizai ainocation e^{*}, $e^{* *}$ an be supported in a mocetary squilibrium \quad aith constant prices over time in each market, dith defiation cross-sectionaily over markets, and with deflatice in sumy other period ot each ggent's lifetime. Eerore establishtrs this corjecture

 stays constant in each mariket. In equatibritu the relatively oic persor o? each garket jasses ziong ain of bis money doiti=gs to the relatirely fourg pergon, who Sien does the same tate next period. That is, money itselt aever goves acress garkets, and so real baiances stay constact in eac: zaricet. In equilibridm geximal money baiances dectine over merkers with the prise ievei; reaj baiences stay constant over merisets.
-7is discussion is zow sumarined in

 particuiar, :or prises,

$$
\begin{array}{ll}
y^{*} \equiv p^{*}>0 & x \geq 0 \\
z^{*}=E^{2} z^{x-i} & x \geq i ;
\end{array}
$$

$$
\begin{array}{ll}
c_{j}^{*}(t)=e^{*}, M_{j+1}^{*}(t)=p^{k *} c^{* *} & i \geq 0, j \text { even } \\
c_{j}^{*}(t)=c^{* *}, M_{j+1}^{*}(t)=0 & j \geq 1, j \text { od }
\end{array}
$$

where k is defined in problem (b) ; and for the sgent borm at sach tine $-6<0$,

$$
\begin{aligned}
& c_{j}^{*}(-h)=c^{*}, M_{j+1}^{*}(-h)=p^{k *} q^{* *} \quad j \geq n, j \text { even } \\
& c_{j}^{*}(-h)=c^{* *}, y_{j+1}^{*}(-i)=0
\end{aligned}
$$

Hthero x is deffied in problem (-h).
3not: See the appendtr.
Thus, it cas been astaolished that there exists an optimal zilocation H.
 zode1. Wherein lies the dfference?

To be roced is that the ainosation $c_{j}=c^{*}, c_{j+1}=e^{\text {F* }}$ for $: \geq 0$, \mathfrak{j}

 prosert ofer future songupticn. Hus tie tee structire sean to ve cucizi.

be cocstant across markets, whereas in the equilibrium of proposition (3.1) prices fill over markets. Yet Eisure 1 roveais that in the turnpike model prices camot fail over makets in the right way for all agents. Falling prices :or agents travelling west imply rising prices for agents travelijng east, for examẹle.

4. The Licas Tersion of the Cass-Yae-i Model

Thus iar zさこention has been regtrieted to modes which have the property
that money allows the economy to achieve a Pareto superior allocation of goods over time, relative to autarky. For the indfvidual, money plays a role in equat1ng, at least partially, intertemporal margionl rates of substitution. This has lead some to claim that money in such nodels serves as a store of value rather than as a medium of exchange. This section presents a third model with spatially
 siency (as weli). In essence, the model is the reli-kecw Cass-Taert cifcie, but with srader pairs and a ticing of transactions as suscested by tices. 11 /

The zodel consists of a countably fniftitite number of ncuseholds and \geq
 cousencid consigtu of a gaiz ot agents and is ingined to be loceted cn tee reai

 aspabie of moving ene-tal: the distance to sne of the to adjacen= intagers,

 separatec mankats. Fners is no etsrass.

Flgure 7: The Cass-Yaar: Model

Eisure 3: Equilibria in Lucas' Cass-Yaart Model
 Eicnai form dill be assumed for scme ourgoses in dhat Eollows.)
is Cass ared Yaari nota, this model disolays tise assance of coubiecotncidence of wancs. at each time $=$ eaci housenoid i can irace with houseioid (i+i), but i bas no commodjef (i-i) rentz. It also snould be acted that this zodsl reverses the sonstmation of Cass and Zaari, breakifs their circle at some goint and spreact=s it back sut over the reai line, with intinite extensiens. $12 /$ As in :he tumpike zodel, this serves to sifminate the possioility of pritata dene. Zousehold i $72 y$ issue an 700 to bousehold (i+1) in exchange for semmodity
 as noted, i has no commodity ($\mathrm{a}+\mathrm{i}$) rents.

(1. !

$$
c_{i j}(i) \geq 0, c_{i}(\pm-1) \geq 0 \quad \geq 0, \text { 2li integers i. }
$$

＂Othin the class of such symmetric ailocations，chen，feasibility is equivalent ＊ith
$c_{t}^{1}+c_{t}^{2}=1, c_{t}^{1} \geq 0, c_{t}^{2} \geq 0, t \geq 0$.

It is now claimed that，subject to this symmetry restriction，the infque Pareto optimal allocation may be found as the solution to

Probiem 3：

$$
\left\{c_{t}^{1}, c_{t}^{2}\right\}_{t=0}^{m a x} \sum_{t=0}^{\infty} 3^{t} \pi\left[c_{t}^{1}, c_{t}^{2}\right]
$$

subject to（＇4．3）．ds the objectipe ：anction and constraints sets are tine separable，$\pm=$ is obvious that the unique sointion $\left\{c_{t}^{T^{*}}, c_{t}^{2^{*}}\right\}_{t=0}^{\infty}$ to this prebiem satざsifies

$$
c_{t}^{1 *}=c^{1 *}, c_{t}^{2^{*}}=c^{2^{*}} \quad \text { ail } t \geq 0
$$

wicere

$$
(4.4) \quad \frac{\nabla_{1}\left(c^{1 *}, e^{2 *}\right)}{\nabla_{2}\left(c^{1 *}, c^{2 *}\right)}=i, \quad c^{1 *}+c^{2^{*}}=1
$$

（See Figure 3．）
Any symetric Seastible ailoca：ton whicin is supposed to fmprove upon this soiution must satisfy（4．3）and incresse utilizy in some period 5 ．The
彐iocation which tiefers from this solution can be inproved upen，and nemce is
 Fievely by intraむemecrai sersiむersこiocs．

be exchanged for itat money．Thus，let $p_{i+1, t}$ denote the price of cocmocity （ $4+1$ ）in terms of fint money at time $=\geq 0$ ．Also，let $M_{t}(i)$ dencte the number of units of isat zone7 aeld by rousenold i at the beginning of period t ，and let $z_{t}(i)$ denote the lump－sum tar．Finally，let $y_{i t}(i)$ denote the endewment of commodity $:$ of household it at time t，so that $7_{i t}(i) \equiv 1$ ．At the beginning of each period t ，one jember of household i travels to the market（ $i, i+1$ ）with some of the beginnins－ofi－period money baiances and pursinases commedzay（i＋1）at the
 （i－i，i）With some of the andowment of commodity $:$ and sells it for ：Iat goney at the price $p_{\text {fte }}$ ．At the end of eack period t，both members of houseiold \pm meturn to their orizizal location and consume．Thus，baking the frice sequence
 sonfrortad

Problem（：）：
subjecs $\mathbf{~ S o}$

$$
c_{i t}(i) \geq 0, c_{1+1}, t(i) \geq 0, M_{i}(i) \geq 0 \quad \therefore \geq 0
$$

（号（i））$P_{i} y_{i t}(i)-M_{t}(i)-z_{6}(i)=$

$$
p_{i j} c_{i 幺}(土)+p_{i+1}, e_{i+1, t}(i)+u_{t+1}(i) \quad: \geq 0
$$

（ $\left.E_{t}(i)\right) \quad p_{i+i}, c_{i+i}, t^{(i)} \leq N_{t}(i)$
$\because \geq 0$

Sitec ${x_{g}}_{f}^{(1)} \geq 0, z_{g}(1)=0$.

Here ($b_{j}(\pm)$) is the money balance accumulation equation, and ($a_{y}(i)$) is the congreatrt that the valuation of consumption of commodity (it) by household it is bounded if beginninz-of-pericd money balances. Thus $\mathrm{a}_{6}(\mathrm{i})$ is very much in the spirit of a Glower constraint. But hers this constraint is generated br the under-7ing exchange technology of the godel. 13/

In what follows, attention will be restricted to equilibria wisen are symmetric across households $i n$ that $\left\{p_{i t}\right\}_{t=0}^{\infty}=\left\{p_{0}\right\}_{t=0}^{\infty}$:or ail commodities i; and $\left\{z_{t}(i)\right\}_{t=0}^{\infty}=\left\{z_{t}\right\}_{t=0}^{\infty},\left\{M_{t}(i)\right\}_{t=0}^{\infty}=\left\{M_{z}\right\}_{t=0}^{\infty}$, and $\left\{z_{i t}(i), c_{i+i}, t(i)\right\}_{i=0}^{\infty}=$ $\left\{c_{\ell, c_{0}^{i}}^{2_{t=0}^{0}}\right.$:or al: households \pm. Order these symmetry restrictions the problem of each acuseicold i is the same, namely, the problem of the representative eousencid,
?problem R:

$$
\left\{c_{t}^{i}, c_{t}^{2}\right\}_{t=0}^{\max },\left\{M_{t}\right\}_{t=i}^{\infty} \sum_{i=0^{3}}^{\infty} \nabla\left[c_{t}^{i}, c_{t}^{2}\right]
$$

subject $=0$

$$
\begin{aligned}
& s_{y}^{i} \geq 0, s_{z}^{2} \geq 0, x_{t} \geq 0 \quad \geq 0 \\
& \text { (} \nu_{z} \text {) } \quad p_{t} y_{t}+u_{t}-z_{t}=p_{t} e_{t}^{i}+p_{t} z_{t}^{2}-u_{t+1} \\
& \text { (} a_{七} \text {) } \quad p_{t} e_{\succeq}^{2} \leq M_{t} \\
& \text { gtien } M_{0} \geq 0, z_{0}=0 \text { with } 7_{5} \equiv \text {. } \\
& \text { The above discusstor teach to time :ollowins }
\end{aligned}
$$

```
In order to #uscover the relationshtp between symmetric moretary
``` equitibria and optinal allecations it is dsefy to consider the necessary Euier soncttions :or a maximu to problem (3). Assuming nonbinding zornega:ivity constratints on money balarces (acd sonsumption) and following Locay and ?aizon [:979], these are of the :sra
(4.5) \(\quad-3^{2} \nabla_{1}\left(\varepsilon_{t}^{9}, c_{t}^{2}\right)+g^{4} \nabla_{2}\left(c_{t}^{9}, c_{t}^{2}\right)-g_{t}^{* 9}=0 \quad E \geq 0\)
(4.5) \(\quad \nabla_{1}\left(c_{E-1}^{1}, c_{t-1}^{2}\right)=\left(p_{t-1}^{*} / P_{t}^{*}\right) B \nabla_{2}\left(c_{5}^{1}, c_{t}^{2}\right) \quad \leq \geq 1\)

Whers \({ }^{2} t\) is the nonegative tagrans mulipliser associated with the constrant (\(a_{6}\)). One inplication is ainost immediate,

?roof: Scppose she soctrory, Then \(\leq\) follows from (4.5) and the senstruction of the optimin (4,4) that in such an equitibrim the rate or ter"aticn gust je 1 - 3, t.e.,
\[
\begin{equation*}
P_{E}^{*}=3 P_{t-1}^{*} \quad t \geq 1 \tag{4.7}
\end{equation*}
\]
 OP:
\[
\text { (4.3) } \quad M_{i+i}-y_{t}^{*}=p_{i}^{*}\left(7_{i}-c^{1 *}-c^{2 *}\right)=0 \quad=\geq 1 \text {. }
\]

Now secsider constraine (\(\mathrm{a}_{\mathrm{y}}\)) 引こ \(=0\),
\[
\text { (1.3) } \quad P_{j}^{*} z^{2 *} \leq M_{j} \text {. }
\]

Then hotiting the consumption sequence \(\left\{\hat{y}_{\}}^{i}\right\}=0\) fixed identically at \(a^{1 *}\), the representait 7 heusekeld could increase consumption of \(e_{t}^{2}\) over \(a^{2 *}\) in every period \(t \geq\); by spending the "surplus" zoney balances. This is the desired contradiction, and it completes the proof. (For an altermative argimen see Locay and ?almon.)

Proposition (4.1) of this nodel is the analogue of proposition (2.1) in the turnpike model. dand \(t=\) seems that propositions (2.2) and (2.1) of the tumpice rocel have analogues here as reli; that is, the optimal allocation can be supported in an intarmentionist acnetary equilibrium, and there exists a noninterventionist zonetary equilibriua mich is nonoptial but ?arsto superior
 conditien for the zaxizization problem cenfronting the representatite housencld :
(1.11) \(\quad i_{t \rightarrow \infty} \frac{s^{5} \Psi_{t} \bar{r}_{2}\left(c_{t}^{j}, c_{t}^{2}\right)}{\bar{v}_{t}}=0\).

Then eor the intarrentionist monetary equitibritu which ts to support the sptima

 -epresentatife sousekold spend all erver-tax money holdings on this soeancity,
 diso, let tise rave of deflatior be i-z. := sumary, then, let

(4.:3)
\(z \div=\left(\underline{u *}-p t z^{2 *}\right)>0 \quad=\geq\) :
(2.4)

\(=2\).

It is apparent that this specification satisfies the necessary and sufficient conditions :or a maximum, (4.j), (4.6), and (4.1i), with nonbinding constraints \(\left(a_{t}\right)\), f.e., \(s_{t} \equiv 0\).

For time nonimearmentienist menetary equilibrtum consider the following speciefcation. First, let prices be constant; then, motさrated by (4.5), let \(c_{t}^{!} \equiv\) \(\tilde{c}^{1}, c_{g}^{2} \equiv \tilde{c}^{2}\), where \(\tilde{c}^{1}\) and \(\tilde{c}^{2}\) are uniquely defined by (14.15) \(\quad \frac{\nabla_{1}\left(c^{-1}, \bar{c}^{2}\right)}{\nabla_{2}\left(c^{-1}, \tilde{c}^{2}\right)}=3, \quad \quad \vec{c}^{1}+\tilde{c}^{2}=1\).

Again, suppose that \(1 \underline{\text { all }}\) beginntng-of-geriod money balances are spent se the "other" ecnsumption good, these being raplentshed :rom the saie of the "ono" sonsumpition good. Teat is, iet
\[
\begin{equation*}
u_{t+i}=p_{t}^{*}\left(y_{t}-c^{-q}\right) \tag{4.16}
\end{equation*}
\]

\[
\begin{equation*}
p_{0}^{*} \equiv \rho_{0}^{*}>0 \text {. } \tag{4.18}
\end{equation*}
\]

 that this sonsumption sequence is noncptimal but Pareto superior to autarky (sse ミ:รมี 3).

The reader may be struck by the similarity of the above results to those of the turapike nodel. To repeat, optimal allocations cannot be supported in a noninterventionist monetary equilibrium, but there exists a monetary equiliorium with constant prices and binding constraines which is ?areto superior to autarky. ! Yet dere, unlike the turnpike model, the imposition of a stronger Clower-tye cons:raint may be sufificient to generate a monetary equilijrium without zaxation which is optimal. In Eact, the imposition of such a constzaine ean convert the

Cass-Taari =odei teto Lucas' [1979] model of goney with certainty. These resu'ts are now established.

The above scieme is zodified in tio ways. קirst, the utility function \(7[\cdot, \cdot]\) is assumed to be of the form
\[
\nabla\left[\varepsilon^{1}, c^{2}\right]=J\left[\left(\varepsilon^{1} / c_{1}\right)^{a_{1}}\left(\varepsilon^{2} / c_{2}\right)^{2}\right]^{2}
\]
where \(\alpha_{1}>0, a_{2}>0, \alpha_{1}+\Sigma_{2}=1\), and where \(J(\cdot)\) satisfíes all the assumptions of the previsus two sections. Second, the constraint (\(a_{y}\)) in proolem (3) is stresgthened \(=0\)
(3!) \(\quad p_{t} c_{t}^{1}+p_{t} c_{t}^{2} \leq n_{t}\).
ds i= Section 2, the fiea herg is that the zember of cousenold \(i\) who traveis to the market (i-1, i) with the endomment \(y_{i t}(i)=1\) zust pay cash in advance for any.
 symetric zonetary squitioritan zay be deftaed in the obrious way, wite (a!)

Eroposi=ive h.2: The optimal aliecation \(c^{i *}\), \(e^{2 *}\) can be supported in a

Eroos: First let \(c_{t}\) denote meai sonsump:ion expenditures i= jeries z ,末.e.,
(4.ig) \(\quad z^{*} \underbrace{!}_{t}-p_{t}^{*}=z_{t}^{2} \varepsilon_{z}\).

Substu:ution of (4.!日) into the bucget sorstraint (by) 7ields

 representative touseincid is of the form
\[
c_{t}^{i} \geq 0, c_{t}^{2} \geq 0 \quad J\left[\left(c_{t}^{\left.\left.q / \alpha_{1}\right)^{\alpha_{1}}\left(c_{5}^{2} / \alpha_{2}\right)^{\alpha_{2}}\right]}\right.\right.
\]
subject to
\[
p^{*} c_{t}^{\eta}+p^{*} c_{t}^{2}=p^{*} c_{t} .
\]

The unique solution to this problem is
\[
c_{t}^{1}=a_{1} c_{t}, c_{t}^{2}=a_{2} c_{t},
\]
so the indirect utility as a function of \(c_{z}\) is just \(J\left(c_{t}\right)\). Fence the problem of He representative souseiold is reduced to
\[
\left\{\max _{t}\right\}_{t=1} \sum_{t=0}^{\infty} z^{*} \tau\left(c_{t}\right)
\]
subject to
\[
\begin{aligned}
& n_{t} \geq 0, c_{t} \geq 0 \quad t \geq 0 \\
& p_{t}+u_{t}-n_{t+1}=p^{*} c_{t} \\
& p_{t} c_{t} \leq u_{t}
\end{aligned}
\]

 optimum. This completes the proc?. ,

 one representative sgent in this acde:, *tereas there ars tra representative 3gents in the turnpike model, and tiat optimal ailocations are detisned according17.

Figure \(9:\) The Tumpike Circle

Figure iO: The Jen Mode:
5. Ciscias and ?rivete Sebt
 Ei̇ve at acy one date in both the turnetce accei and in the persion of the CassYaari model fust prosected. This speci:̈eation ersurec that the excilisicn of pritate dobt was indeed endogenous. jith the removal of this eontemporaneous infinity, the role of pritate debt can be acalyzed. onis section is intended to be Biuntratize of the xind of analysis whict may be uncertaken.

The contemporaneous infinity is removed from the zumpike model by con7ereing it into a circle. This is done in Eigurg f ior an economy witu eizat agencs. ds before, arrows indicate the ti-acticn of travei, spixas inditeste fslands or markets, and Fesizien.

Focustng on the eafoings or agents in this model, it becomes olear that

 gosizinns. To understand the way agemts are paired over time, consider the itinerary of one of the agents. Agent a, of trpe \(A\), begins in period \(2 e r o\)

 ons :unt, being safred with zgent b'. Continuing, agent a gtays in markst a in geriod two and finaity moves back to garket I th jeriod tiree. Period four is the same as peried zero.

The fact that agents meet ropeatedif in this version of the turnpike gocel has no hearing on tee deterninaticn of optimai aliccations. Uncer the symetry condition tiposed in Section 2, in (intertar) optimun has the oroperty that each agent of type 1 receives \(\lambda\) units of the sonsumptan zood 1 - each pericd. In fact, 3 il the orccostions of Section \(\leq\) apely to this econemy if one acceots the exogenous exclusion of dept. Jet now there may be private debt equilibria. That is, debt may be used as 三goans of paytent.

 Ehis hes :o effect on the propersies of optiza.) a partiouiar scintu is corsicerot. In the inftal period, \(t=0\), each agert of trpe i is permiteac to

 zers is

ב゙ocian 10.3\():\)
\[
B_{0}^{A} \geq 0, e_{0}^{\max } \geq 0, e_{3}^{a} \geq 0
\]
sub:

where \(B_{0}^{A}\) is the number of ICUs issued \(j 7\) agent ifpe \(A\) and \(-z_{3}^{d}\) is a itmp-sum :orgiveness (subsidy) of debt in period tinee. The 引bove two budgat censtreints may be assumed to sold as equalities. Eare the nonnegativizy consiraints may be isnored, yielding the necessary first-crder condition
\[
\text { (5.3) } \frac{\pi^{\prime}\left(c_{0}^{A}\right)}{\rho_{0}}=3^{3} T^{\prime}\left(\varepsilon_{3}^{\frac{1}{3}}\right)(1+c) .
\]

In periods one and two the deot issued jy agenes \(a\) and \(a^{\prime}\) is traded in marikets : anc 3 , respectifely. In particular, agen: a can purchase the debt (of a') i= garket 3 in period one and seli the deot in maricet \(R\) in period tivo. Lattins p; and \(p_{2}\) denote the prise of the consumptian good in terms of iove in perincis one and tric, respectively, the prociem coneronzing each asent trpe in in period one is
\[
\text { Probiom } \mathrm{a}(:, 2):
\]
\[
\xi_{2}^{\dot{A}} \geq 0, \varepsilon_{1}^{\max _{1} \geq 0, c_{2}^{A} \geq 0} \operatorname{BJ}\left(c_{1}^{A}\right)+3^{2} J\left(c_{2}^{A}\right)
\]
sujさect =0
(5.A) \(\quad p_{1} e_{1}^{A} \leq p_{1} 7_{1}^{A}-3_{2}^{A}\)
(5.5) \(\quad \Xi_{2} \overbrace{2}^{d} \leq B_{2}^{A}-z_{2}^{A}\)

 (5.0) \(\quad \frac{3 \pi\left(e_{1}^{A}\right)}{5_{1}}=\frac{2^{2} J^{\prime}\left(e_{2}^{A}\right)}{2_{2}}\).
 :s

Proolem 3(0.1):
\[
a_{1}^{3} \geq 0, c_{0}^{3} \geq 0, c_{1}^{3} \geq 0
\]
\[
\begin{equation*}
p_{0} c_{0}^{3} \leq p_{0} y_{0}^{3}-3_{1}^{3} \tag{5.7}
\end{equation*}
\]
(5.8) \(\quad p_{1} c_{1}^{3} \leq 3_{1}^{3}-z_{1}^{3}\)

Whers \(3_{1}^{3}\) is aumber of iovs acquired by agent type 3 in gertod zero and \(z_{1}^{3} \geq 0\) is the lump-3um confiscation in period one. The necessary ismest-order condition is (5.9) \(\quad \frac{\sigma^{+}\left(c_{0}^{3}\right)}{P_{0}}=\frac{\rho \sigma^{\prime}\left(c_{i}^{3}\right)}{\rho_{1}}\).

Sinilarly one ootains
?roblem 3(2.3):
\[
3_{\frac{3}{3}}^{\max ^{3}} 0, c_{2}^{3} \geq 0, c_{3}^{3} \geq 0^{s^{2} J\left(c_{2}^{3}\right)+3^{3} v\left(c_{3}^{3}\right)}
\]
(5.10)
\[
\rho_{2} \approx_{2}^{3} \leq o_{2} y_{2}^{3}-B_{3}^{3}
\]
\[
\begin{equation*}
c_{3}^{3} \leq\left(3_{3}^{3}-z_{3}^{3}\right)(1+r) \tag{5.11}
\end{equation*}
\]

With necessary isest-order condition
(5.12) \(\quad \frac{3^{2} \cdot\left(c_{2}^{3}\right)}{P_{2}}=3^{3} \mathrm{~J} \cdot\left(c_{3}^{3}\right)(1+\Gamma)\).

These procecures lead to the foliowtin

 \(p_{\partial}^{*}, z_{2}^{A^{*}} ;\) and \(e_{1}^{A^{*}}, \sigma_{2}^{A^{*}}, 3_{2}^{A^{*}}\) solve zrooiem \(A(1,2)\) relative to \(0_{1}^{*}, p_{2}^{*}, z_{2}^{A^{*}}\) :
 \(p_{1}^{*}, z_{1}^{B^{*}} ;\) and \(c_{2}^{3^{*}}, c_{3}^{3^{*}}, a_{2}^{3^{*}}\) sclye proolem \(3(2,3)\) relative to \(p_{2}^{*}, r^{*}\), \(z_{3}^{3 *}\); and
1i1) mariket clearins- \(c_{t}^{d^{*}}+c_{t}^{3 *}=1, t=0,1,2,3\).
A gajor point of this section is that the decentreitzation of the Jurnpike zodsi gamot be oversome with gritata dect alons. To see this, suppose for the moment that all four agents of the above model vere in the same naricet in sach of the :cur periods. Then thers is a (sentrảized) Arrow-Debreu competitive equilitrive rith
\[
\begin{array}{lll}
p_{t}^{*}=6 \nabla_{t-i}^{*} & :=1,2 & i-n^{*}=\frac{i}{s^{3}} \\
c_{t}^{\lambda^{*}} \equiv \frac{3}{1+t^{2}} & c_{t}^{3 *} \equiv \frac{1}{1+3} & ==\hat{*}, \quad i, 2,3 .
\end{array}
\]

Of scurse this ailocation is optimal. Zet it turns out that neither cinis
 esoncmy uncer a pritaje dest acuilibri= withous taxazisn. Mors formaint sensizer

Proposition (5.1) and its anaiogue, proposition (2.1), sugast tizat fnstde zoney it the turnpike zodel act3 rery much like outsite money. in iact, The acalogue of proposition (2.2) may be ootained as rell.

Provosition 5.2: Any interior optimum \(\lambda\) aith \(9 \leq[\lambda /(1-\lambda)]\) and \(3 \leq\) \([(:-\lambda) / \lambda]\) can be supported in a private debt equilibrin with lump-sum taxation and :crgiveness of debt.

 3re statisetse, ixth the tucget, senstrainus as equainties in every period. Iniz is sữifciont ocr the propesed solution to satisiy the maximizing ocneitiacrs (:)

 :

 gnsuerec ir

 geusiprix
?roposition E.3: There exisis 三 conserained prizate deot squisiortion

\[
\begin{aligned}
& s^{*}=0 ; p_{t}^{*}=1, t=0,1,2 ; z_{t}^{2^{*}} \equiv 0,1=A, 3 . \\
& c_{t}^{\lambda^{*}}=s^{* *}, c_{t+1}^{d^{*}}=c^{*}, s_{t}^{4^{*}}=e^{* *}=6, t=0,2 \\
& c_{t}^{3 *}=c^{*}, z_{t+1}^{3}=c^{* *}, s_{t+1}^{s^{*}}=s^{* *}, t=0,2 .
\end{aligned}
\]
 savisfifed for prociems \(A(1,2), 3(0,1), 3(2,3)\), and rodinined prooiom \(:(0,3)\). This eompletes the jroc:.
 instde zecey pisfs the mole of a ncnnega:dvity sonstraint on money jaiances it the sme vecocry
 taxation ant wienout suck exegenousiy inpoget construngts. Tet it can be ssabitsited shat far the sinpie four-peried enciow descrisec ajove thers does extst 3t ieast one suci equitibnixing ind ciearly ore may introcuce private

 rest of tee ratier seecti assumptices mitci jate teen loaced futs tive form-

unestricted debt and fiat zeney can coexist; this is the subiect of engoing researsi.

\section*{5．Cencitutis 3omercs}

Fie contantisn of this paper is ozfious：zodels of money ritin ミプー
 thege somunication－cost zodeis explain foney in a ringrous way，at least subjec： te the faclictu restrictions of the competiささfe paradizu．Jut mors researin is qeeded．Remainigg to be inpestigatac，for example，are ine iesues of asset domitares 3ad capital over accumulation when storage is aiiowect To be locked at
 excgenousif inposed symetry restriceions．
 aeriss of mocels in the sistract，atheut reference either to actual obserTetions
 spacialit secarated 3gents ean be nocupted to explafit the existence of heth

 ことe overiapoi－z－ganeratices consiruct has beet showr by Jryant and iainacs

 in eaci \(=\) ：

an cbvious question: why kas the competitive mechanism oeen inposed as opposed :o some other? In this regerd, socsider the welfare theoroms of this paper. These theorems are cocsistent with the view that the operation of comperitive markets is possibie though diect radistribution of endowments is not, or at Least that the first schame is Iess onerous tian the second. Putting this iz amother way, if the agents of the model coult agree to direct redistribution or she endowments, then Pareto optinal allocations coule be achieved wivecut the use of zoney. The welfare theorens of this paper ars al30 consistent with the piew that the operation of competitive markets aicn马 with lump-sum taxation of money
 gore tenucus than the first. Fieally, it nay be coted that in Lucas' rersiec of
 taxatisa or bhe inposizion of a Clower constreint, requiring che inge of goney to Furshase sommcititas. Is there any sense in whish one of these zciemes is greferable to : te otter? Twe ocims of teis discussion ts that ir the sontext of the speciffed eccecmis envirorments of the mocels of this paper, ary arizarion ased to seiset :rom among varietu schomes is at hoc and thus :nsaifsfactery.
 andosenous. That is, tee surirenment of the mocel should be suffieienziy rich

\section*{Appendir}

\section*{？roof of ？rocosition 2．2：}

Eirst，Let \(\sum_{0}^{*}=3 p_{t-1}^{*}, a: 1=\geq 1\) ．Next，for agent type a let \(c_{j}^{\lambda^{*}}=\lambda\) ， \(\left(M_{0}^{\lambda^{*}} / p_{0}^{*}\right)=\lambda\) ，and \(M_{1}^{A^{*}}=0\) so that agent type a spends ail of ins inieial money balances on consumprion．Subsequentiy，tax as needed to maintain the consumption sequence \(c_{t}^{\lambda^{*}} \equiv \lambda\) rith meney balances returning to zero in ever＂other period：
\[
\begin{array}{ll}
y_{t}^{d}=1, c_{t}^{d^{*}}=\lambda, z_{t}^{\lambda^{*}}=0, M_{t+i}^{A^{*}}=p{ }_{t}^{(1-\lambda)} & : \geq 1,=\text { odd } \\
y_{t}^{A}=0, c_{t}^{\lambda^{*}}=\lambda, z_{t}^{A^{*}}=0,\left[\frac{1-\lambda}{3}-\lambda\right] \geq 0, M_{t+1}^{\lambda^{*}}=0 & =\geq 2, \text { even. }
\end{array}
\]

Simitarly，：or agant type 3 let \(\mathrm{N}_{0}^{3 *}=0\) and
\[
\begin{aligned}
& z_{t}^{3}=1, e_{t}^{3^{*}}=i-\lambda, z_{t}^{3^{*}}=0, n_{t+i}^{3^{*}}=p{ }_{t}^{*} \lambda \\
& 7_{t}^{3}=0, c_{t}^{3^{*}}=1-\lambda, z_{t}^{3 *}=z_{t}^{*}\left(\frac{\lambda}{3}-(i-\lambda)\right] \geq 0, n_{t+1}^{3 *}=0 \quad t \geq i,=\operatorname{ocd} .
\end{aligned}
\]
 7erioy that the above speciliseticr sonsこitutas a soluticn to the zaxi＝iこaこうor
 done exp：－ivi＝if for agent ype 3 ；the argument for agent tree \(A\) inilows inmeciaこei7．

Next, convert the problem of agent type 3 into real terms. In particular, lat \(\mathrm{a}_{\mathrm{t}}^{3}\) \(=\left(p 7_{t}^{3}-z_{t}^{3 *}\right) / p_{t}^{*}\) so that
\[
\begin{array}{ll}
w_{t}^{3}=1 & t \geq 0,: \text { even } \\
w_{t}^{3}=-\left[\frac{\lambda}{3}-(i-\lambda)\right] & t \geq 1, t \text { odd } .
\end{array}
\]

Also let \(m_{6}^{3} \equiv M_{5}^{3} / p_{0}^{3}\) denote real money balances held by agent type 3 at the beginning of period t. From the budget constraint (\(b_{\mathrm{b}}\)) as an equality and litilizans the fact that \(p_{0}^{*}=3 p{ }_{t-1}^{*}\), ail \(t \geq 1\), it follows that
\[
\begin{equation*}
c_{t}^{3}+3 m_{t+1}^{3}=x_{t}^{3}-z_{t}^{3} \quad 311 t \geq 0 \tag{1.3}
\end{equation*}
\]

Ines, from (A.2), setting \(c_{t}^{3}=c_{t+i}^{3}\) :or \(: \geq 0\), : even, and solving for \(m_{t+i}^{3}\) one obtains
(1.4) \(\quad(i+3) m_{t+i}^{3}=w_{t}^{3}-x_{t+i}^{3}+n_{t}^{3}-3 a_{6+2}^{3}\)
\(t \geq 0\), e ever
(..ラ) \(\quad(1+3) c_{t}^{3}=(i+3) c_{t+1}^{3}=i_{t}^{3}-3 w_{t+1}^{3}+m_{t}^{3}-z^{2} z_{t+2}^{3} \quad=\geq 0\), ever.

Eciiowing the methods of ices and Prescott [i97!1 it can be established tin:

\[
7\left(n_{0}^{3}\right)=\frac{\max }{\frac{m_{2}}{2}}\left\{\left[0\left(c_{0}^{3}\right)-30\left(c_{1}^{3}\right)\right]+z^{2} \nabla\left(n_{n}^{3}\right)\right\}
\]
subject to
i) \(\quad 0 \leq m_{2}^{3} \leq\left(i_{1}^{3}-4_{2}^{3}-m_{0}^{3}\right) / 3\),
i-) \(c_{j}^{3}\) and \(c_{i}^{3}\) satisif (A.5) at \(==0\), given \(y_{y}^{3} \geq 0\).

braciets above, as an indirect (unctien ot \(z_{2}^{3}\), is bounded and contizucus.) Enere

\[
\max _{\left\{n_{t}^{3}\right\}_{t=2}^{\infty} \sum_{t \geq 0} 3^{t}\left[0\left(c_{t}^{3}\right)+30\left(c_{t+i}^{3}\right)!\right\}}
\]
subject \(=0\)
t) \(0 \leq a_{t+2}^{3} \leq\left(w_{t+1}^{3}-w_{t}^{3}-m_{t}^{3}\right) / 3\),

1i) \(c_{t}^{3}\) and \(c_{t+1}^{3}\) satisfiy (A.5), given \(n_{y}^{3} \geq 0\).
Thus there does exist at least one solution to the problem confronting agent type 3.

Clearly, the proposed solution
\[
\begin{array}{ll}
c_{t}^{3} \equiv 1-i, m_{t}^{3^{*}}=0 & t \geq 2, t \text { even } \\
g_{t}^{3 *}=\frac{\lambda}{3} & t \geq 1, t \text { odd }
\end{array}
\]
 socs:raine (\(\hat{y}_{f}\)) is aiso satissied as an equaintz in every perioc. Mon suppose

 soさusさce is inceed maxinizing.

A from \(t=1\) onward．In particular，by the principle of optimality，at \(t=\) ？ given
\[
m_{2}^{\lambda^{*}}=\frac{(1-\lambda)}{3}, A_{2}^{A}=-\left[\frac{(1-\lambda)}{3}-\lambda\right], m_{2}^{A^{*}}+w_{2}^{A}=\lambda,
\]
the sequences \(\left\{\int_{t}^{A^{*}}\right\}_{t=2}^{\infty}\left\{n_{t}^{A^{*}}\right\}_{t=3}^{\infty}\) solve the problem of agent type A．Jut given \(m_{0}^{A^{*}}=\lambda\) this implies that \(\left\{C_{t}^{A^{*}}\right\}_{t=0}^{\infty}\) and \(\left\{\mathcal{I}_{t}^{A^{*}}\right\}_{t=1}^{\infty}\) solve the problem of agent type A，as desired．

Proof of Proposition 2．4：
By construction market－clearing condition（ii）of an equilibrium is satisitied，so \(\pm=\) remains to verify that the specification of the proposition is sonsistant with maximization．This will be done expicicitiy for agent type \(\lambda\) ．

Consider ：inst any consumption sequence \(\left\{c_{6}^{A}\right\}_{t=0}^{\infty}\) and associated money balance sequence \(\left\{M_{t}\right\}_{t=1}^{m}\) which satisfy the budget constraints（ \(b_{t}\) ）as an equaミューラ，士．e．，
（d．6）\(\quad x_{b}^{d}=p * c_{t}^{a}+x_{t+1}^{4} \quad: \geq 0\) ，even
（A．7）\(\quad F_{F+1}^{1}-M_{E+1}^{A}=P * c_{t+1}^{A}+M_{t+2}^{A} \quad t \geq 0\) ，t even．
Solving（A．b）：or \(M_{t+i}^{d}\) and substituting into（A．T）yields
（A．3）\(\quad p * c_{t}^{A}-p^{*} c_{t+1}^{\dot{M}}=p y_{t+1}^{A}+M_{t}^{1}-N_{t+2}^{1} \quad e \geq 0\) ， even．
From（A．O）also，with \(\mathrm{N}_{6 \rightarrow i}^{\mathrm{d}} \geq 0\) ，
（A．g）\(\quad z^{*}=x_{0}^{A} \quad=\geq 0\) ，e even．

 งダひニこここ
\[
\nabla\left(M_{0}^{A}\right)=\max _{N_{2}^{A}, \varepsilon_{0}^{A}}\{0\left(\varepsilon_{0}^{A}\right)+3 U[\frac{M_{0}^{A}+p^{*}-7_{1}^{A}-N_{2}^{A}-p^{*} \overbrace{2}^{A}}{p^{*}}+3^{2} \nabla\left(M_{2}^{A}\right)\}
\]
subject to
\[
\begin{aligned}
& \text { i) } 0 \leq p^{*} c_{0}^{A} \leq N_{0}^{A} \\
& \text { iA) } 0 \leq x_{2}^{A} \leq g^{*} y_{1}^{A}+M_{0}^{A}-g^{*} c_{0}^{A}, \text { given } M_{0}^{A} \geq 0 .
\end{aligned}
\]

Eire, then, the solution \(\left.\left(M_{2}^{d}, c_{0}^{d}\right)=\psi_{\left(M_{0}^{2}\right.}^{d}\right)\) is the stationary policy function minion solves

\(\left\{c_{t}^{A_{1}},\left\{M_{2}^{A}\right\}=0\right.\) even
subject \(=0\)
1) \(0 \leq P^{*} c_{t}^{a} \leq N_{t}^{a}\)

Thus there does exist a solution te the prooiem of agent A.
Clearly, the proposed sciutien satisities (2.6) as an equativf for \(=\geq 0\), \(t\) ever, and as an inequality for \(: \geq i\), \(=\) odd, ie.,
(A. io: \(\frac{J^{\prime}\left(c_{t-1}^{A^{*}}\right)}{3 U^{\prime}\left(c_{0}^{A^{*}}\right)}=\frac{J^{\prime}\left(c^{* *}\right)}{S^{\prime}\left(c^{*}\right)}=\frac{1}{3^{2}}>1 \quad=\geq 1\), =ode.

Risc, the budget constraint is satisfies es an equality in every period. Now fir

 (A.10), \(e_{\tau+2}^{A}<c_{\tau+2}^{d^{*}}\), and so cn. This cannot ine an improvement. Thus \(\left\{c_{t}^{A^{*}}\right\}_{t=1}^{\infty}\), \(\left\{M_{t}^{d *}\right\}_{t=2}^{\infty}\) is mndeed maximal for agent \(A\) :rcu \(=1\) onward, and so, by the prizoiple
土mises \(\left\{c_{t}^{j^{*}}\right\}_{t=0}^{\infty},\left\{M_{t}^{A *}\right\}_{t=1}^{\infty}\) is maximai for agent \(A\) at \(t=0\), as clained. A Tintualit Identical argument (ilthout the i-ast stap) establisines that the specifited soiution is maximel for agent trpe 3 is well.

Fimaily, note that for asent \(A\), for example, from (\(A-i 0\)) ant (2.3), at \(>0\) for \(=\geq 1\), \(=\) odd. Simtlariy, \(f^{3 *}>0\) esr \(\geq 0\), \(t\) even.

That the equilibritm illocation is ncnoptimal ig obrious iscon tie fact thet the consumption sequences ars not constant. That it is parete supertor to altarly is aiso ocvious, but it is isstrictive to sote that for egent 1 , for exarpie, \(e^{* *}\) cominares 0 in period 0 , and the consumption pain (\(0^{*}, c^{* *}\)) jominates

\section*{Proc: o? Proposition ?.i:}

It is İrest establiseed tant the above spectization is maximizing for

 \(M_{j \rightarrow i}\) (气) \(7 \pm=1 d s\)
(.1.11)
\[
x_{j}(t)-2_{i+j}^{x^{7}} 7_{j}-x_{j+2}(t)=F_{t-j}^{x^{*}} \theta_{j}(t)-2_{t+j+t^{k}}^{c_{j+1}}(t)
\]
 speci:ized rolauionseip
\[
\rho_{t+j}^{k^{*}}=p_{t+j+1}^{k^{*}}=\left(1 / 3^{2}\right) 0_{t+j+2}^{k^{*}},
\]
（A．11）then gields
\[
a_{j}(t)+y_{j}=c_{j}(t)+c_{j+1}(t)+3^{2} n_{j+2}(t) \quad j \geq 0, j \text { even. }
\]

Now bolding \(m_{j}(:)\) and \(z_{j+2}(t)\) fixed，define real disposable income \(d_{j}(t)\) by （A．12）\(\quad d_{j}(t)=m_{j}(t)+z_{j}-3^{2} m_{j \rightarrow 2}(t) \quad j \geq 0, j\) even and consider in isolation the ：ollowing problem：
\[
c_{j}(t) \geq 0, c_{j+1}^{\max }(t) \geq 0^{\left\{J\left[c_{j}(t)\right]+3 U\left[c_{j+1}(t)\right]\right\}}
\]
subiect to
\[
e_{f}(t)+s_{j+1}(t)=c_{f}(t) .
\]

Soivins for the maximizing \(c_{f}\left(\begin{array}{l}\text {（ }\end{array}\right.\) and \(c_{j+1}(t)\) as sontimucus finctions \(\rho f d_{i}(=)\) ， substさこutさon tnec the oojectipe finction then Jialts the bounded，contiacous

\[
\max _{\left\{m_{j}(:)\right\}_{i}}^{\sum_{j} \geq 0} 3^{j} 3^{j}\left\{\in_{j}(t)\right\}
\]
subさect to（A．12）anc
\[
I_{d}(:) \geq 0 \quad 1 \geq 2, \pm \text { even giten } z_{z}(t) \geq 0 \text {. }
\]
 shis srociem．

It is clear from the discussion preceding the theorem that the speciied solution to problem (t) satisfies the necessam eirst-order conditions (3.4) as equalities. (The budget constraints also hold as equalities.) Now suppose there exists a consumption sequence \(\left\{\hat{c}_{j}(t)\right\}_{j=0}^{\infty}\), and associated money balance sequence \(\left\{\hat{\boldsymbol{m}}_{j}(t)\right\}_{j=1}^{\infty}\), which does better than the proposed solution and consider the first age \(z\) for which \(\hat{A}_{g}(t) \neq c_{g}^{*}(t)\). A now familiar argument leads to a contradiction.

It follows from the principle of optimality that for any \(k \geq\) i, the
 by symmetry the sequences \(\left\{c_{j}^{*}(-h)\right\}_{j=h}^{\infty},\{m(-h)\}_{j=h+1}^{\infty}\) are maximal for the agent born at each period in, given \(n_{2}^{*}(-h)\), as we needed to show.

1/The termizology here is 'ialiace's (1978).
2/But see the concluding section for a qualification to this stacement:

3/The implications of such clower constraints, over and above the canstraints implied by the technology of exchange, are examined, however.
\(4 /\) See Wallace (1978) and the discussion in Hahn (1973) on inessential mocey.

5/ A case can be made that models of money oith spatially separated agents are of incerest \(i z\) their own right, quise apart from providiag an alternacive to overlapping-generations.

6/On an a priort basis this should =ot be a suprise; indeed, versions of the overlapping-generations model have been criticized for producing optinal monetary equilibria. See iallace (1978).

7 Cass, Okino, and Zelciza (1979) have argued that the inefificiency of monecam equilibrium emerges in the overlapping-generztions godel under altezative assumptions.

3/Recall the caveat at the end of the introduction.
2/If there are limitations on the issue oí rous, there can exist equilibria in whici IOUs have value and are never redeemed. Such equilibria are pizioaily iadistinguisiable Erm equilibria with valiled fiat money, as defined below.

10/This is left as an oper question. It may je moted, however, that Grandmont and Youness (1772) do establish certaiz resules in the limit, at \(a=1\), using the overtaiking criescion.
 to lucas and his students and sugzested to me by Lucas in various conversations; the interested Esader is urzed to conscl: Locay and Palmon (1978) on wicich =his secsion draws heavily. The model is presenced hers both because it does 20 c sem so be kown gemerally and because it ojiers a maturai comparisou with the onher two medels.
il/ :ucas' \(\quad\) erston of the Cass-Yaari nodel retains the cizole.
13/It is curious so zote that a (í) corzesponds to the transactions =or:-
 =exily anatyzed =iere.

16 The example is due to Neil Wallace.

\section*{References}

Eenley，：．＂Tニe Optimum Guantivy of Meney，＂in Modeta of Mongeary Econecise， Fecera：？．eserve Jank ol＇Minneapoís，！97ヨ．

ヨraner， X ．，and A．Meİzer．NThe Jses of Money；Money in the Theory of an Exchange Eccecmy，＂Americar Econcéte 2evier j1，1971，784－305．

Bryant，J．ntze Politicsi Eecnomy of Sperlapping Generztions；＂Staf：Report， Federal Geserve 三ark of Minceapcits，uniy 1979.
－The Irmeacticrs Demand for Mcney as Morzi Eazarc，＂in Yocieis of Yoretam Eccocoins，Eeterz1 Reseme Eark of Mimeapolis，is79．
，and N．Ma：lace，NThe iferatciency of a Nomizal Natiera：Debt，＂ Researsh Department，Feceral Reserve Jark of Mineapolis，Sta：＝Report \＃28，

 tediaries，＂？esearsh Department，Ëderà Reserve Bank of Minneapolis，Staff

 Yodei，＂yourazi of Politica：Eencour，1966，357－ō？．
 ；970，－25－433．
＂A Recocsideration of tee Marcroundations of doneram Fecro，＂

Thar：is，M．＂Expectations and Money in a Dyamic Exchange Enoncm，＂forthocminz， Econometrioz．
\(\qquad\) and R．M．Townsend．Thilocation Mechanisms ：cr ispometricaliy Informed Lsents，＂Carnegiz－Melion Noricing Eaper \(\ddagger 35-75-77\) ，revised Septem－ ber 1978.

Carmegis－Meilon Norkiez ？aper ；4ミ－77－78，revised Jaruary i979．
vohnson， 日．G．＂Es There an Optimun Guantivy of Money，＂Jourmal of Fimance 25， May 1970，435－442．
 of Interaztional Eanomics，1977，i9～3．
 Mineapolis，Sta：＂：Report \(\$ 24\), Juif 1978.
 Monetary Yodel，＂Jeiversity of Chieano menuscript，July ig7s．
 Yopezary Eccocmites，Eecera！Reserve Eank of Maneapoizs，1077． －＂Expectations and the Vetirzifty of Money，＂journet of Eopncti＝ \＃eory 4，：972，103－i21．
，ard ミ．C．Irescott．＂Investant Onder Uncertainty，＂Esonemetrisa 35，1971，おショーj：．
 Encncmic ㄹ．
，and 2．M．Starn．Meney and the Decemizaitzation of Excianza，＂ Ecpnosetrina，Yovember 1974，1093－1：13．
 dgent Statisticai Dectsion Theort，＂Garnegiewellon，manucript，＂or＝t－
 Jeffrovs，ec．，droid Zainer，Vor：i fojanc．

 4¢7

"Commodity Money, 01isopoly, Credic, and Janikruptcy in a Ceneral Equinibrium Model," Nestern Econcmic Journal '1, 1972.

Starn, A. M. "Excianges in Earter and Monetary Econc-itas," Quarterly jouma: of Ecenomics, Kay i972, 290-302.

Townsend, R. M. "Equilibrtum with Endogencus Mariketeers," Carnegie-ísellen rorking ミaper, November 1978.
- Noptimal Contracts and Competitive Markets inith Costly State Veri-
 in the journal of Economic Theory.
"rallace, . . "The Overlapping-Generations Model of Fiat Money," Researsh De-
 appear in Models of Monecary Esonomics, Federal Eeserve Zank of Minneapo:is.```

