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i . Introduction 

The purpose of the present paper is to outline some procedures that 

are useful for solving part icular types of rational expectations models. 

The principal application of the techniques described below is in solving 

discrete t ime dynamic games of the l inear-quadratic-Gaussian (LQG) 

variety. These techniques are nonrecursive or "open loop" in character, 

and are derived from the variational methods presented in Sargent 

(1980) and Hansen and Sargent (1981). The approach taken in this 

paper closely fol lows that of Hansen, Epple, and Roberds (1985), so that 

the analysis below may be taken as a generalization of that paper. 

Other techniques are available for solving the sort of models con

sidered in this paper, such as those described in Levine and Curr ie 

(1985), Buiter (1983), and Whiteman (1985). However, the techniques 

presented below may be more useful to those researchers accustomed to 

formulating and solving models using the Hansen-Sargent notation and 

methodology. 

The paper is presented in the fol lowing order: Section 2 lays out 

three types of two-player L Q G games; Section 3 discusses their solu

t ion; Section 4 gives some examples of models that can be addressed by 

the methodology of this paper. Issues concerning numerical implementa

tion are discussed in an Appendix. 



2. Three Dynamic Games 

Below I analyze dynamic games with two inf initely l ived players, 

each having a time invariant, t ime additive , discounted quadratic objec

tive functional. A l l stochastic forcing variables enter into the players' 

objective in a l inear fashion, and are assumed to be normal ly d ist r ib

uted. The two player assumption can be relaxed, subject to computa

tional constraints, but the other assumptions cannot. The purpose of the 

other assumptions is to faci l i tate econometric application by allowing 

l inear least squares projections to be used in place of conditional 

means. In terms of notation, let 

be a column vector of decision variables of player 1 

(abbreviated P i ) at t ime t; 

be analagously defined for player 2 (P2); 

be a column vector of uncontrollable forcing variables influ

encing P i ' s payoff at t ime t; 

be analogously defined for P 2 ; 

6 (0,1) be a discount factor common to both players. 

P i ' s objective is given by: 

f l t 

f 2 t 

0 



V e E 0 2 ? l { f u u l t - [ A ( L ) u l t ] ^ M 1 [ A ( L ) u l t ] 

t=0 

- [ B ( L ) u 2 t K i M 2 [ B ( L ) u 2 t ] 

- [ A ( L ) u l t ] ' M 3 [ B ( L ) u 2 t ] 

- u ] t | N 1 u l t - u 2 t i N 2 u 2 t - u J t N 3 u 2 l } 

where A(L) and B(L) are matr ix polynomials in the lag operator L, of 

f inite dimension and degree; M p M 2 , M ^ , N ^ , N 2 » and are matr i 

ces of the appropriate dimension; M ^ , M ? , N ^ , and N 2 are symmetr ic , 

EQ is the expectations operator , conditional on information available at 

t ime t = 0. P2*s objective is given by 

J 2

e E 0 2 ^ { f 2 t u 2 t " [ C ( U u l t r i P 1 [ C ( L ) u l l ] 
t=0 

- [ D ( L ) u 2 t ] ' i P 2 [ D ( L ) u 2 t ] 

" [ D ( L ) u 2 t ] ^ P 3 [ C ( L ) u u ] 

- ^ i t i Q i u i t " u 2 t W 2 u 2 t " u 2 t Q 3 u l t 

where C(L) and D(L) are f inite dimensional, f inite degree matr ix poly

nomials in the lag operator L; P ^ , P 2 , P ^ , Q j , Q 2 , and Q 3 are matr i 

ces of the appropriate dimension; P ^ , P 2 , Q ^ , and Q 2 are symmetr ic , 

and EQ i s defined as before. The definiteness conditions 



A ^ V ^ ' M ^ V 1 " ) , D(^eiG))'P 1 D O ? V I A > ) > 0 (2.1) 

2 
are assumed to be satisf ied for OJ 6 [-7r,jr]. 

The uncontrollable forcing vector process = V^2t ^ 1 S a s s u r n e c ^ 

to be Gaussian and to have t ime invariant fundamental moving average 

representation 

X t c F(L) v t + K (2.2) 

where is vector white noise, and K is a constant. In the analysis that, 

fol lows, K is normalized to equal to zero. 

Each player i seeks to maximize his objective by choosing a sequence 

of strategies {g^} . Each strategy maps the player 's information (l.^) 

into a decision taken at t ime t, i.e. u^ = g i t ^ i t ) - Below, the approp

riate specifications of information sets are given for the three dynamic 
3 

games considered. 

Game 1 {Open Loop Nash): Let IQ represent the information set gene

rated by the in i t ia l conditions for a l l variables in the model, and let 

represent the information set generated by the shocks v .̂, v * . 4 * " " « Then 

for P i (superscripts indicate the game number) 

l } t = Q t U I 0 U - i e i co 
{ 82t } t=0 

(2.3) 

while for P2 



4t = Q t U I 0 U i e \ co 
o (2.4) 

Here, g , and g 7 are anticipated strategy sequences. An equilibrium i s 
i 1 i i a pair of strategy sequences (g , , g 9 ) such that g , and g 9 are optimal 

e 1 e 1 for P I and P2 respectively, when g^ = g^ and %2 ~ %>2 ' 

Notes on Game 1 

The strategy sequences gj and g 2 are required to be optimal for 

almost every real izat ion of ( v j . They are also restr icted to be affine in 

(v ) , and the result ing sequence of equi l ibr ium decisions must be 

"stable," i.e. of mean exponential order less than . The restr ic t ion 

to affine strategies al lows for use of the certainty equivalence pr inciple, 

while the mean exponential order assumption provides for a convenient 
4 

resolution of some nonuniqueness problems. These restr ict ions w i l l 

apply in a l l games considered in this paper. 

Because the information sets in Game i contain no state variables 

other than uncontrollable shocks, this sort of game is described by 
s 

dynamic game theorists as "open loop." Games in which controllable 

state variables appear in players' information sets are described as 

"closed loop" or "feedback" games. A s emphasized by Kydland (1975) 

and others, the equi l ibr ia of open loop dynamic games w i l l in general be 

different from the feedback or closed loop equi l ibr ia. The open loop 

approach taken in this paper is just i f ied largely by computational con

siderations. Par t icu lar ly for econometric applications, the open loop 



procedures discussed below may offer considerable gains in computa

tional convenience over the procedures used to obtain closed loop and 

feedback equi l ibr ia. 

It i s also important to note that each player 's information does not 

include knowledge of the other player's future decisions, but instead 

knowledge of the other player's future strategies. The distinction be

tween decisions and strategies is an important one. The strategy se

quences are determined once and for a l l at the beginning of the game. 

Decisions are taken simultaneously by both players in every period. 

Game 2 {Open Loop Stackelberg): Fo r P I (the leader) 

I^t = Q t U I 0 (2.5) 

while for P2 (the follower) 

1=4 • (2-6) 

2 2 
A n equi l ibr ium for this game is a pair of strategy sequences (g^ , g 2 ) 

such that g 2 is optimal for P2 when g^ = g^ , and g^ i s optimal for P i . 

Notes on Game 2 

In this game, P i i s not constrained to take P 2 ' s strategies as given, 

but is free to exploit the dependence of P 2 ' s choice of strategies on the 

choice of g^ . In equi l ibr ium, the value of P i ' s objective is necessari ly 

no less than in the Nash game. 



One interesting feature of Game 2 is that the same equil ibr ium ob

tains i f the information of the fol lower i s changed to 

hi = * t

 u 

i e i co 
teit>t= Q (2.7) 

where 4^ represents the information set generated by the entire past 

history of a l l the processes in the model, including endogenous proces-
6 

ses. 

In Section 3 , it is shown that the equi l ibr ium of Game 2 w i l l in 

general be t ime inconsistent. That i s , the original equi l ibr ium strategy 

sequence gj w i l l generally not remain optimal as t ime passes. Without 

some mechanism to guarantee that P I w i l l hold to the in i t ia l equil ib

r ium strategy sequence, the equil ibr ium of Game 2 is not viable. For 

this reason, another sort of Stackelberg game is considered. 

Game 3 {Time Consistent Stackelberg Game): P i ' s information i s given 

fay 

i * i i • <2-8> 

while P 2 ' s information is given by 

3 * 
I 2 t = I 2 t • (2.9) 

Equi l ibr ium is defined as in Game 2, except for an additional restr ic t ion 

on the strategies of P i . That i s , in choosing a t ime t strategy, P I i s 



constrained to ignore the impact of of this choice on P 2 ' s choice of 

strategies dated before t ime t. In other words, in choosing gj^. , P I 

must take as given g ^ s for s < t. 

Notes on Game 3 

The distinctions between Game 2 and Game 3 w i l l be c lar i f ied in the 

next section. 

One distinction that deserves immediate mention is that in Game 3 , 
it 

P2 must be allowed access to the "larger" information sets { ^ }. 

That i s , i f P2 were allowed access only to I^ » the same equil ibr ium 

would no longer obtain in Game 3. 

Because of the additional restr ict ions on the strategy sequence g^ , 

the equi l ibr ium value of P i ' s objective in Game 3 can be no larger than 

in Game 2. It w i l l in general be quite difficult, to compare Games 1 

and 3 in this fashion, since both players' information sets differ across 

the two games. 

6 



3. Solution Procedures 

By "solving" the models described in Section 2 i s meant the fo l 

lowing: for each of the games, the f i rs t order conditions of the two 

players w i l l be reduced to a set of f inite order expectational difference 

equations. These equations, in turn, can be solved for equi l ibr ium laws 

of motion in the variables u ^ and u 2 t using known methods for solving 

l inear rational expectations models. Expl ic i t formulas for the equil ib

r ium strategy sequences are not derived. 

The solution procedures make heavy use of the techniques developed 

by Hansen and Sargent (1981). Especial ly useful are the following dif

ferentiation rules. Suppose that {xj and {yj are sequences such that 

S 1 = 2 ^ [ a t U y ^ ' B [c(L)x t] 

t=0 

and 

0 0 t 

S 2 e 2 P [d(L)y t] ' [d(L)y t] 

are f in i te, where a(L), c(L) , and d(L) are matr ix polynomials in the lag 

operator, and B and F are appropriately dimensioned matr ices. Then 

(Di) 3 S 1 / 3 y t = / a ( ^ L _ 1 ) ' B c(L) x t ; 

(D2) a S 2 / a y t - ^ d ( ^ L _ 1 ) / F d ( L ) y t 



Certainty equivalence is also exploited, in that the models are f i rs t 

solved for conditional means. Terms involving expectations are then 

evaluated using Wiener-Kolmogorov prediction formulas. 

Solution of Game 1 

To init iate the solution procedure suppose that P i knows the sequence 

of equi l ibr ium strategies (g 2 t ) of P 2 . It fol lows that, as of t ime t, P i 

knows the current and past decisions of P 2 , and that P I can correct ly 

forecast P 2 ' s future decisions. The necessary f i rs t order conditions for 

P i ' s optimization problem are then 

[ N ^ A O S L ' V M J A O - ) ] E t u l t + [ N 3 + A ( ^ L " 1 ) / M 3 B ( L ) ] 

= f i t , t = 0, 1, 2 , ••• , (3.1) 

where again represents the conditional expectations operator. The 

operators L and L ^ are defined as fol lows for the sequence of condi

tional means E^u^ : L [ E ^ ^ ] = E t _ i u

t _ i » A N ^ L * ^ t u i t ' ~ ^ t u t+ i ' 

i.e. negative powers of L do not shift forward information sets. The 

f i rs t order condition for P2 is s im i l a r l y given by 

[ 0 3 + D ( p L " 1 ) / P 3 C ( L ) ] E t u u + [ Q 2 + D ( ^ L " 1 ) / P 2 D ( L ) j E t u 2 t 

= f 2 t jj t = 0 , 1 , 2 , ••• . (3.2) 

Now stack equations (3.1) and (3.2) to obtain the system 



H ( U E T U T = X T 

where 

( 3 . 3 ) 

and 

H ( L ) = 

N 1 + A ( j ? L " 1 ) / M 1 A ( L ) N 3 + A ( / ? L " 1 ) / M 3 B ( L ) 

Q 3 + D ( / g L " 1 ) / P 1 C ( L ) Q 2 + D ( £ L " 1 ) / P 2 D ( L ) 

Equation ( 3 . 3 ) i s an expectational difference equation of the type ana

lyzed by Hansen and Sargent ( 1 9 8 1 ) , Whiteman ( 1 9 8 3 , chapter 4 ) , and 

Watson ( 1 9 8 5 ) , among others. What fol lows is a brief outline of the 

Hansen-Sargent-Whiteman approach to solving systems such as ( 3 . 3 ) . 

F i r s t , suppose that H(L) can be factored as 

H ( L ) = S O S L ' V T O - ) ( 3 . 4 ) 

where S(z) and T(z) are appropriately dimensioned one sided matr ix 

polynomials of degree n, n being the largest degree of the matrix poly

nomials A(z ) , B(z), C(z), and D(z). It i s further assumed that the roots 

of det T(z) are distinct and outside the c i rc le | z | = and that the 

roots of det S(/?z are distinct and inside this c i rc le . One can then 

wri te S(/?L * ) ' * in partial fractions form as 

l i 



N . 

S O S L ' V " 1 = 2 • (3.5) 

where the N . are matr ices of the appropriate dimension, and the z . are 
J _i J 

the roots of det S[f$z ). Since, in equi l ibr ium, both players' decisions 

must be of mean exponential order less than /? ^, operating on both sides 

of (3.3) w i t h S ^ L ' V " 1 yields 

T(L) U t = S ( p L _ 1 ) / _ 1 E t f t . (3.6) 

F ina l ly , using (3.5) and the Wiener-Kolmogorov prediction formula, 

(3.6) can be expressed as 

N . 

T(L) U = 2 — — 
L - z . 

J J 

L n F ( L ) - z n F(z ) 
•J «J 

v t . (3.7) 

Again the summation is over the roots of det S(/?z ). Equation (3.7) 

i s a "feedforward-feedback" representation of that, together with in i 

t ia l conditions, gives the unique stable solution to equation (3.3). 

Methods by which systems such as (3.7) can be estimated are described 

in Hansen and Sargent (1980). 

9 
Solution of Game 2 

To initiate the solution procedure for the Stackelberg game, suppose 

that P2 knows the sequence of equi l ibr ium strategies of P i . Then, as 



in the Nash game, P i ' s current and past decisions w i l l be known to P 2 , 

and P2 w i l l be able to correct ly forecast future decisions of P I . P 2 ' s 

f i rst order condition w i l l be the same as in the Nash game, i.e. equation 

(3.2). Since P2 (the follower) now takes P i ' s strategies pararnetrical-

ly , it w i l l be convenient to rewri te (3.2) as 

Q 2 + D ( p L " 1 ) , P 2 D ( L ) E t u 2 t 

Q 3 + D(/?L V P 3 C ( L ) E t u l t + f 2 t (3.8) 

The character ist ic polynomial of equation (3.8) has factorization 

D ( £ z " V P 2 D(z) + Q 2 = G ( / ? z " V G(z) (3.9) 

where G(z) is a polynomial having degree equal to that of D(z), and the 

roots of det G(z) exceed ^ in modulus. Again requiring ( u 2 J to be 

stable al lows equation (3.9) to be solved forward, yielding 

G ( L ) u 2 t s G J M - " 1 ) ' " 1 Q 3 + D ( / ? L " V P 3 C ( L ) E t u l t + f 2 t 

t = 0, 1, 2 , ••• . (3.10) 

Equation (3.10) can be thought of as a "closed loop" representation of the 

sequence of optimal decisions { u 2 J . The members of this sequence are 

expressed in (3.10)as a function of lagged values of u^. , and current 



and lagged values of u ^ and f^j. (after making the appropriate substitu

tions for terms involving expectations of future variables). Using this 

representation, one could go one step further and derive the sequence of 

optimal open loop strategies for P2 by operating on (3.10) with G(L) , 

However, for the present purpose of deriving the equil ibr ium law of 

motion for u ^ and u ^ , this extra step is not necessary. 

The next step in solving Game 2 is to formulate P i ' s problem as a 

constrained maximizat ion problem 

max s. t. (3.10) . 

The Stackelberg leader P I in effect chooses a strategy sequence for 

both players. However, the strategy sequence chosen for P2 must be 

chosen so that it i s optimal for P 2 , taking P i ' s strategies as given, 

i.e. the result ing sequence of decisions (u 2 t ) must satisfy (3.10). 

To solve the leader's problem, form the Lagrangian expression 

h'-h +
 c o 

where 



CO 

V 
- G(L) u 2t 

t=0 

+ G Q S L / V " 1 ( f 2 t - [ Q 3 + D ( 0 L " 1 ) / P 3 C ( L ) ] E t u n } 

Here ( X J is a vector Lagrange mui t ip l ier process, of the same dimen

sion as u 2 t . . For t < 0 , X^ is defined to take on a value of zero. F i r s t 

order conditions for the leader's maximizat ion problem are obtained 

by differentiating 1^ with respect to u ^ , and u 2 { . , and are given by 

[ N ^ A O S L ' V M j A O - ) ] E t u l t + [ N 3 + A ( P L " 1 ) / M 3 B ( L ) ] E ^ 

+ [ Q 3 ' + C Q S L ' V P ^ D(L) ] G ( L ) " 1 X T = f . (3.11) 

[ N 3

/ + B ( / S L " 1 ) / M 3

/ A ( L ) ] E t u u + [ N 2 + B ( £ L _ i ) ' M 2 B ( L ) ] 

+ G { £ L ~ 1 ) ' E t X t = 0 , (3.12) 

and the constraint (3.10), for t = 0 , 1, 2 , • • • . Making the substitution 

i t = G ( L ) _ 1 X t , operating on (3.10) with G Q S L " 1 ) ' , and stacking (3.11), 

(3.10), and (3.12), one obtains the system 

• • * 
H (L) E t U t = X t , (3.13) 

where 

15 



and H*(L) = 

[ H(L) ! Q 3 + C ( ^ L - V P ; D ( L ) | 

1 0 

N 3 ' + B ( j ? L " 1 ) / M 3 / A ( L ) N ^ B O S L - 1 ) ' M 2 B ( L ) j Q 2 +D(/9L _ 1 ) ' P 2 D ( L ) 

Equation (3.13) can also be derived by taking P 2 ' s f i rs t order condition 

(3.8) as the constraint in P i ' s optimization problem. 

A s with the Nash game, equation (3.13) can be solved by factoring 

H (L) when H (L) posesses the "right" factorization. The result is a 

feedforward-feedback representation for the augmented decision vector 

U j. , which together with in i t ia l conditions yields the solution for U ^ 

and hence for U t . 

Of part icular interest are the in i t ia l conditions for the vector of 

Lagrange mul t ip l iers. A t the beginning of Game 2 , note that the correct, 

in i t ia l conditions for are given by ^ = 0 for t < 0. However, as t ime 

evolves, w i l l in general take on nonzero values. Now consider a 

dynamic subgame of Game 2 , beginning in period r > 0. For any such 

subgame, the solution of P i ' s problem would require that be in i t ia l -

16 



ized to zero for t < r. Hence the equil ibr ium for the subgame w i l l be 

different from the or iginal equi l ibr ium, and the optimal strategy se

quence for the leader i s said to be time inconsistent. 

Comparison with Whiteman's Technique 

Whiteman (1985) has proposed an alternative technique for solving 

for the equi l ibr ia of games such as Game 2. Whiteman's method dif fers 

pr incipal ly from the one presented above in that (1) the leader's problem 

is formulated in the frequency domain; and (2) rather than using L a -

grangian methods, Whiteman in effect substitutes equation (3.10) into 

the leader's objective. 

i * 

To compare the two techniques, it i s useful to rewri te H (L) in the 

form 

(3.14) 

where the double prime indicates transposition and "/^-conjugation." 

Now use (3.12), i.e. the last component of (3.13), to el iminate E^ 

from (3.13), yielding 

H*(L) = 

H U ( L ) 

H 2 1 ( L ) 

H 1 2 ( L ) 

H 1 2 ( L ) H 1 2 ( L ) " 

H 2 2 ( L ) 0 

H 3 2 ( L ) H 2 2 ( L ) 



H 1 1 ( L ) - H 2 1 ( L ) " H 2 2 ( L ) - 1 H 1 2 ( L ) » H ^ O J - H ^ O J " ^ ^ ^ 

H 2 1 ( L ) H 2 2 ( L ) 

X 
E t u l t k t 1 (3.15) 

. f 2 t _ 

which I abbreviate as 0(L) = . Al ternat ively, equation (3.15) 

could be derived by using equation (3.10) to substitute out for E^ in 

P l * s objective J ^ , and differentiating with respect to E^ . 

Essent ia l ly , the alternative technique proposed by WPiiteman involves 

factoring 0(L) and applying the Hansen-Sargent solution algori thm. 

Since 0(L) can always be obtained from H (L), this approach could also 

be used with the methods presented above. 

Some care must be exercised with this approach, however. In obtain

ing equation (3.15), equation (3.12) was operated on with f " ^ ^ ) » 

which is in general a matr ix rational function (or two-sided infinite 

order matr ix polynomial) in the lag operator L. Since (3.12) i s only 

guaranteed to hold for nonnegative t ime, this operation w i l l only be jus

t i f ied under special circumstances. For example, this operation w i l l be 

just i f ied when both players' objectives have been normalized so that a l l 

variables take on a value of zero for negative t ime. This operation is 

also just i f ied i f one is only interested in the steady state of the particu-

18 



la r game under consideration. 

Solution of Game 3 

The t ime inconsistency of P i ' s strategy sequence in Game 2 results 

because P i ' s choice of strategy g^ . for t > 0 has an effect on P 2 ' s 

choice of strategy g 2 s for 0 ^ s < t . A t t ime t, i f P i were to recalcu

late his optimal policy sequence, these effects would no longer matter, 

causing P i to change his choice of strategies. 

These effects enter into the f i rs t order conditions for P i ' s problem 

only through the presence of lagged values of X^ in equation (3 .1 i ) . 

Since, in Game 3 , P I i s required to ignore these effects, (3.11) must 

be replaced by the following f i rs t order condition: 

[ N 1 + A ( / ? L " 1 ) / M 1 A(L) ] E t u l t + [ N 3 + A 0 9 L " 1 ) / M 3 B ( L ) ] E t u 2 t 

+ j [ Q 3 ' + C ( £ L " V P 3 ' D ( L ) ] G ( L ) - 1 } X t = f l t , (3.16) 

where the notation ( }_ means to ignore positive powers of L. Equations 

(3.16), (3.10), and (3.12), which correspond to the new f i rs t order 

conditions for P i ' s problem, can now be stacked to yield the system 

H C(L) E t U c

t = X * t (3.17) 

where 



H l l ( L ) H 1 2 ( L ) H 1 3 

H c (L) = H 2 1 ( L ) H 2 2 ( L ) 0 

H 1 2 ( L ) » H 3 2 ( L ) H 3 3 

H 1 3 ( L ) E { [ Q 3 / + C ^ L ' 1 ) / P 3

/ D(L) ] G ( L ) - 1 } , and 

H 3 3 ( L ) = G ( / ? L ~ V . 

A character ist ic feature of H (L) i s that i ts rightmost "column" in-

volves no positive powers of L. This means that i f H (L) has canonical 

factorization H C ( L ) = S ^ / S L ' V T ^ L ) , and T c (0) i s normalized to be a 
c 

diagonal matr ix , then the last "column" of T (L) must be a l l zeroes. 

This last fact in turn impl ies that in equi l ibr ium, the current value of 

U ^ does not depend on past values of X^ . Hence the t ime path of 

w i l l be independent of in i t ia l conditions for X^ , and the strategy se

quence for P I w i l l be t ime consistent. 

Another interpretation of Game 3 would be as a game played by a 

fol lower P2 and an infinite sequence of Stackelberg leaders. The t ime t 

leader has an objective given by a t ime t version of , and chooses 

U j t so as to maximize this objective. The t ime t leader cannot commit 

to future values of u ^ , although he can correct ly forecast these deci

sions in equi l ibr ium. For an example of how the solution of Game 3 

20 



can be derived under this interpretation, the reader is referred to 

Hansen, Eppie, and Roberds (1985). 

Whiteman (1985) has also proposed a method for solving Game 3. 

A s with Game 2 , one can essentially replicate Whiteman's method by 

eliminating the Lagrange mul t ip l ier process from equation (3.17), and 

solving the result ing expectational difference equations. 
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4 . Examples 

Below are presented examples of models where the methods of Sec

tion 3 may be applied. 

Example 1: Whiteman's "Generic Example" 

Whiteman (1985) considers a very s imple two player game between a 

hypothetical policymaker and a player representing "the public." A l 

though Whiteman's model dif fers sl ight ly from the c lass of models con

sidered in Section 2 , the solution methods presented above are s t i l l 

applicable. 

In this model, the policymaker plays the role of P I and the public the 

role of P 2 . The sca lar forcing process is f i rs t order autoregressive, 

and u ^ and are both scalars. P i ' s objective is to min imize the 

discounted weighted sum of expected fluctuations in the decisions of 

both players, i.e. 

2 2 

t=0 

u 2 t + ^ u l t 

Here, n is a positive weight. P i ' s objective is thus to stabi l ize fluctua

tions in u~2t , subject to a quadratic cost associated with policy interven

tions. P2 has an essentially static objective: in each period, choose a 

minimum mean squared er ror forecast of 

22 



-1 00 
. l.t+j t+j_ 

where \p\ > ft . The optimal estimate of w i l l be given by 

u 2 t = V 1 ( 1 - p ^ L " 1 ) " 1 ( E t u u + E t f t ) (4.1) 

which corresponds to equation (3.2). 

To begin the analysis of this model, note that the optimal strategy for 

PI in Game 1 is to set = 0 for a l l t. Since P i ' s objective is to 

stabi l ize u 2 t , i f P i takes P 2 ' s strategies as given, then P i ' s optimal 

strategy sequence is the t r iv ia l one. 

In Game 2 , the Lagrangian for the leader's problem is 

t=0 

+ E 0 2 P l \ [u2i+pi(l-p~iL{)~i ( E t u u + E t f t ) . (4.2) 

t=0 

The f i rs t order conditions for the leader's problem w i l l be (cf. equations 

(3.11) and (3.12)) 



r ] u l t + p~ 1 ( i - ( f t ) ) " 1 ! - ) ' 1 X t = 0 ; (4.3) 

u 2 t + X = 0 . (4.4) 

Note that equation (4.3) is val id when X^ has been normalized to zero 

for negative t. 

One approach to solution of equations (4.1), (4.3), and (4.4) would 

be to stack those equations and apply the method outlined in Section 3 . 

Because of the very s imple nature of the model, however, it i s easy to 

solve by direct substitution. F i r s t , use equations (4.3) and (4.4) to 

solve for u 2 ^ , which yields 

u 2 t = w ( 1 - i$pT% u u . (4.5) 

Equation (4.5) holds for positive t; i f u^ _j i s normalized to zero, then 

it also holds for t = 0. Equation (4.5) can then be substituted into 
-1 

(4.1), and the result ing equation operated on with (L - p) to obtain 

[ - n ( L [ -p) {p^L-p) - l ] E t u u = f t (4.6) 

Hansen and Sargent (1980) show that when follows the autoregressive 

law f̂  = yf t _j + e. , equation (4.6) has solution 

u i t = c i u l , t - i + [ C Q - V d - c 2 y ) ] f t , (4.7) 

where -r\ (z ^-p) (/? ^z-p) + i can be factored as CQ (1-C^Z) ( l - c ^ z 
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CQ < 0 , and c^ , c 2 6 (0,1)- The optimal strategy for P i thus consists 

of part ial ly offsetting the effect, of the current shock f^, subject to a 

"correction" of c^u^ ^ . The time inconsistency of this strategy i s 

manifested in the fact that equation (4.7) only holds for t = 0 i f u^ _^ 

has been normalized to zero. If P i were to recalculate an optimal 

strategy sequence starting at some t ime r > 0 , then u^ , would have 

to be set to zero, result ing in a different choice of strategies. 

To find the optimal t ime consistent policy for P i , note that in Game 

3, the leader's f i rs t order condition (4.3) must be replaced with 

r | u l t + p _ 1 X = 0 . (4.8) 

Using (4.8) and (4.4) to eliminate from equation (4.1) then impl ies 

that 

InpL1- (r)p2 + l ) ] E t u u = f t . (4.9) 

2 2 Defining dg = -(i+rjp ) , and d^ = r\p/{i+r\p ) , equation (4.9) can be 

solved for to obtain 

u n = d o " i f t / ( 1 " d i > r ) ' ( 4 , 1 0 ) 

In Game 3 , P i ' s equi l ibr ium strategy sequence is by construction 

t ime consistent. This is reflected in the fact that, unlike equation (4.7), 

equation (4.9) w i l l hold for a l l t £ 0, and need not. be modified for the 

in i t ia l period. 
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For Games 1-3, the equil ibr ium sequence of decisions for u 2 ^ can be 

derived by substituting the appropriate expression for P i ' s equi l ibr ium 

strategy sequence into equation (4.1), and evaluating expectations. 

Example 2: Linear-Quadratic Duopoly Models 

In Hansen, Epple, and Roberds (1985), the methods of Section 3 are 

applied to a model of a duopolistic industry that extracts a nonrenewable 

resource. These methods can also be applied to other linear-quadratic 

oligopoly models. A s an example, consider Kydland's (1979) model of 

an industry where there are adjustment costs. 

In this setup, there are two f i rms in the industry. Entry by other 

f i rms into the industry is not possible. F i r m i produces output y.^ and 

invests amount over period t. Investment is determined as 

where 6 is the depreciation rate. The real cost of investment x.- to 

f i rm i at t ime t i s given by 

q x i t + c ( x i t - < 5 y i t ) 2 , (4.12) 

2 
where q is the unit cost of capital and the term c ( x ^~^y^-) » c > 0 , 

represents the adjustment cost associated with changing the f i r m ' s capi

tal stock. Each f i rm seeks to maximize 
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J i - ^ o 2 0 l PtVit " ^ x i t " c ( x i t " ^ i t ) 2 

t=0 

(4.13) 

where p t i s the real pr ice of the f i rms* output at t ime t, net of any con

stant unit production cost. This price is determined by a l inear inverse 

demand function 

Pt = a t - a [ y i t + y 2 t ] • (4.14) 

where a^ i s a random shock to demand and a is a positive constant. To 

map Kydland's model into the notation of Section 2 , set 

u i t = y i , t + i ; (4.15) 

A(L) = B(L) - C(L) = D(L) = (1-L) ; (4.16) 

f i t " ^ a t + i " U-PUM) I 

M 1 = P 2 = 2c ; 

M 2 = M 3 = N 2 = P 1 = P 3 = O 1 = 0 ; 

N 1 = 2 N 3 = Q 2 - 2 Q 3 a pa . 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

S i m i l a r substitutions can be used with other duopoly models. It is 

also easy to modify the objective of the second player so that P2 
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represents a "competitive fringe" of sma l i f i rms that see themselves as 
10 

having no impact, on the price of the industry output. 

Example 3: Optimal Growth with a Public Good 

A s a f inal example, I consider a s imple model of macroeconomic 

growth. In this model there are two consumption goods and two capital 

goods. There are two representative agents, P I being the "government" 

and P2 being a representative nongovernmental agent, called "the private 

sector." One type of capital good (call this m) can only be accumulated 

by the government. However, the government makes this capital good 

freely available to the private sector. The other capital good (call this 

k) can only be accumulated by the private sector. The stock of govern

mental or public capital as of t ime t evolves as 

m

t ~ Y m t - l + z t 1 (4.21) 

where is current governmental investment, and y equals one minus 

the depreciation rate 6. Governmental investment z* must, be financed 

by lump sum subtractions from the stock of private capital at t ime t , 

k.. Conversion of private capital into public capital incurs an adjust-
2 

ment cost ib^(z^-<5m^) . When z^ i s negative, this is interpreted as a 

governmental subsidy of private investment. Such subsidies also incur 

adjustment costs. The government is not allowed to borrow or lend, 

and governmental (dis) investment must equal the amount of lump sum 

taxes (subsidies) in every period. 
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Private capital k̂  i s assumed to accumulate according to the law 

k t = A-i ( 4 - 2 2 ! 

where i, i s private investment. Associated with a level of investment. 
2 

i. are adjustment costs 4b^ (i. — 6k.) . 

The capital goods and k̂  are used to produce consumption goods g t 

and c t . Neither g t nor c t are storable, and these goods are produced 

according to the l inear technology 

k 1 [ An A 1 2 

A 2 1 A 2 2 _ 3 . 

( 4 . 2 3 ) 

The additional restr ict ions are imposed that A ^ > A ^ - 0 » that &22 ^ 

&2[~ ^» a n c * t n a t the A matrix i s nonsingular. If one thinks of g t as a 

"public" consumption good, and as a "private" consumption good, these 

assumptions imply that both kinds of capital may be used to produce 

both kinds of consumption goods. Governmental capital i s more produc

tive than private capital in the production of the public consumption 

good g^, and vice versa for the production of the private consumption 

good c. . 

The ut i l i ty associated with consumption (g^, c^) is assumed to be of 

the quadratic, additively separable variety: 

U u ( g t , c t) = - | 0 I ( g r g * ) 2 - | ( i - 0 . ) ( c t - c * ) 2 ( 4 . 2 4 ) 
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for i = 1, 2 , where g and c are b l iss points and 1>0.>O. Both the 

government and the private sector seek to maximize the discounted sum 

of their respective ut i l i t ies , minus the discounted costs of governmental 

and private investment. A f ter some substitutions, these problems can 

be shown to be equivalent to the following: 

max - J . , where 

t=0 

• 9 • ? 
u . ( m t - m r + w . ( k t - k r 

+ 2 v. ( m t - m * ) ( k t - U + b 2 [ ( i - y L ) k t ] 2 

• 2 + (b,+b2) [ d - y L ) m t ] " + 2b 2 [ ( l - yL )k t ] [ ( 1 - yDm^ 

• * 
In the expression above, m and k are the stocks of capital necessary 

to eff iciently produce g and c . The terms u., Vj, and w i are defined 
as 

u. v. 
1 1 = A" 

V. w. 
1 1 

! i 0 

o (i-e.) 
A (4.25) 

The model described above may be di rect ly mapped into the setup of 

section 2 using the following substitutions: 
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f 0 . = v 9 m +w 0 k ; (4.30) 

u i t = m t ; (4.26) 

u 2 l = k t ; (4.27) 

A(L) = B(L) =* C(L) = D(L) = (1-yL) ; (4.28) 

- f u = u j » % r < k * ; (4.29) 

:2t = v 2 

M 1 = P 1 = b 1 + b 2 ; (4.31) 

M 2 = P 2 = b 2 • ( 4 , 3 2 ) 

M 3 = P 3 = b 2 ; (4.33) 

N | = u A ; N 2 = w t ; N 3 = Vj ; (4.34) 

Q j = u 2 ; Q 2 = w 2 ; Q 3 = v 2 . (4.35) 

it * 

In addition, the term (v^m +w^k ) k̂  must be subtracted to the govern

ment's ut i l i ty function. 

Simulation of Example 3 

Two possible reasons why one might want to want to simulate this 



model are described below. F i r s t , in the case where 6^ = 0 2

 a n c ^ the 

government and private objectives coincide, it might be a useful norma

tive exercise to derive the equil ibr ium sequence of taxes under 

various assumptions concerning the type of game played by the govern

ment and the private sector. Since the preferences of both players 

would coincide, this tax sequence would be optimal for both players. 

It i s wel l known that for this sort of policy problem, where there is 

only one private agent and the government can impose lump sum taxes, 

that the equi l ibr ia of the three games studied in this paper w i l l coin-
13 

cide. Hence to derive the optimal path of taxes, investment, capital 

stocks, and consumption goods, one need only solve Game 1 (Nash). 

Another reason for simulating this model would be to investigate the 

effect of "perverse" governmental preferences on the equil ibr ium paths 

of the variables in the model. For example, it might be the case that 

those responsible for the setting of governmental policy prefer higher 

levels of consumption of the public good g^ than does the private sector, 

i.e. 0 j > 0 2 • In such cases, the three games studied in this paper are 

l ikely to result in different equil ibrium outcomes. 

A s an i l lustrat ion, three simulations of the model were run, using 

the following hypothetical parameter values. For the f i rs t s imulat ion, 

the values = .926 , A ^ = A 2 2 = 1-25, A ^ 2 = A 2 ^ = . 75 , b^ = b 2 = 

20 , and 0^ = 0 2 = .15 were used. B l i s s points for and were set 

to a value of 100. In the f i rs t s imulat ion, Game 1 was simulated over 

100 t ime periods, given in i t ia l conditions k_̂  = - 10. In the 
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second simulat ion, Game i was again simulated after 0^ was reset to 

.5 . In a third simulat ion, Game 2 (Stackelberg) was simulated using 

the same parameter values as in the second simulation. Game 3 was 

not simulated because numerical investigations indicated that the neces

sary polynomial matr ix factorization did not exist for these parameter 

values. 

The outcomes of these three simulations are depicted in Figures 1-4, 

and are labelled respectively "Optimal" ( i.e. optimal from the stand

point of the private sector), "Game 1," and "Game 2." Figure 1, which 

depicts the t ime path of m^, shows that when governmental and private 

sector preferences coincide, the government w i l l in i t ia l ly subsidize 

private investment by converting governmental capital into private capi

ta l . In contrast, when the government overvalues the public consumption 

good g t , public capital increases monotonically over t ime. The steady 

state stock of governmental capital also increases dramatical ly in the 

second and third simulations. Figure 2 shows that governmental over

valuation of g t causes the steady state level of private capital to fa l l 

dramatical ly. Figure 3 depicts the t ime path of g^ as a percentage of 

i ts b l iss value. A s might be expected, stronger preferences for g^ by 

policymakers lead to overconsumption of the public good. Figure 4 

shows that the opposite holds true for the private good c^. 

In general, Figures 1-4 i l lustrate that the effects of governmental 

overvaluation of the public consumption good are what one would in

tuit ively expect, i.e. overinvestment in public capital and underinvest

ment by the private sector, with corresponding shifts in consumption. 
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The negative effects of this overvaluation are somewhat less (in the 

sense that deviations from optimal values are smaller) in the Stackel-

berg game, where the government i s (by assumption) able to credibly 

precommit i tsel f to a sequence of tax pol ic ies. 
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Appendix: Notes on Numerical Implementation 

There are a number of methods of obtaining the factorizations of the 
* c 

H(L), H (L), and H (L) matr ix polynomials that are required by the solu

tion procedures outlined above. 

One simple method is to use the procedure suggested by Whittle 

(1983) for factoring the spectral density matr ix of a vector moving 

average process. This method was used in the simulat ions of Example 

3. In each simulat ion T(0) or T (0) was normalized as the identity 

matr ix. In the case of Game 2 , using this normalization required that 

the second and third rows of H (L) be interchanged so as to render T (0) 

diagonalizable. This last step is recommended when using this algo

r i thm for Games 2 and 3. 

Dagli and Taylor (1984) have also devised an iterative algorithm for 

the purpose of obtaining such factorizations. For large systems, this 

algorithm is easier to implement than Whit t le 's algori thm. A s an i tera

tive algori thm, it would seem to be part icular ly wel l suited to econome

t r ic applications. 
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Notes 

1. In the Stackelberg games considered below, the leader's objective 

w i l l not be t ime additive after substitution for the fo l lower 's reactions. 

2. These conditions are sufficient for each player 's problem to be wel l 

defined in the Nash game (see Hansen and Sargent (1981)), and for the 

fo l lower 's problem to be wel l defined in the Stackelberg games. Suff i 

cient conditions for the leader's problem can be derived using the re

sults in Telser and Graves (1971, chapter 6). 

3. The term "information set" i s used here in the game theoretic sense, 

i.e. a player 's information set as of t ime t is the domain of his strategy 

function as of t ime t. The notation used below for information sets is 

intentionally heurist ic. 

4. That i s , under this assumption one can often show the existence of a 

unique homogeneous solution to the players' f i rs t order conditions. See 

Hansen and Sargent (1981) for a discussion. 

5. The term "open loop" i s usually applied to games under certainty, 

i .e., the case for which v^ = 0 for a l l t in the setup above. Bui ter 's 

(1981) definition of "open loop" for the stochastic case does not al low 

open loop strategies to depend on uncontrollable shocks. The above 

definition of open loop strategies for the stochastic case corresponds to 

that of Kydiand (1975), except for the restr ic t ion that strategies be 



affine. The reader i s referred to ar t ic les by Kydland (1975,1977) for 

comparisons of open loop, feedback, and closed loop dynamic games. 

6. See Basar and Olsder (1982, p. 309). 

7. That i s , the operator L as defined above is identical to the operator 

B defined in Sargent (1980, p.337). 

8. Throughout this section the existence of such factorizations w i l l be 

assumed. 

9. Levine and Curr ie (1984) derive a solution procedure very s i m i l a r 

to the one outlined above. Their procedure dif fers mainly from the one 

above in that the leader's problem is formulated using "state-space" 

notation. 

10. For an example of this sort of modif icat ion, see Hansen, Epple and 

Roberds (1985). 

11. A l l quantities in this example are per capita. 

12. Al ternat ively, J . could be viewed as the discounted sum of con

sumer surplus minus investment costs. 

13. See H i l l i e r and Malcomson (1984). When the government can only 

impose proportional taxes, this result w i l l not hold. See Sargent 

(1984) for a comparison of Games 2 and 3 in a proportional taxation 
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environment. 

14. S i m i l a r existence problems were encountered by Kydland and 

Prescott (1977) while attempting to simulate a linear-quadratic t ime 

consistent Stackelberg model. This suggests that existence problems 

are l ikely to be encountered with Game 3. 
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