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i. Introduction

The purpose of the present paper is to outline some procedures that
are useful for solving particular types of rational expectations models.
The principal application of the techniques described below is in solving
discrete time dymamic games of the linear-quadratic-Gaussian (LQG)
variety. These techniques are nonrecursive or "open loop" in character,
and are derived from the variational methods presented in Sargent
(1980) and Hansen and Sargent (1981). The approach taken in this
paper closely follows that of Hansen, Epple, and Roberds (1985}, so that

the analysis below may be taken as a generalization of that paper.

Other techniques are available for selving the sort of models con-
sidered in this paper, such as those described in Levine and Currie
(1985), Buiter {1983), and Whiteman (1985). However, the techniques
presented below may be more useful to those researchers accustomed to
formulating and solving medels using the Hansen-Sargent notation and
methodology.

The paper is presented in the following order: Section Z lays out
three types of two-player LQG games; Section 3 discusses their solu-
tion; Section 4 gives sorne examples of models that can be addressed by
the methodology of this paper. Issues concerning numerical implementa-

tion are discussed in an Appendix.



2. Three Dynamic Games

Below [ analyze dynamic games with ;LWO infinitely lived players,
each having a time invariant, time additive , discounted quadratic objec-
tive functional. All stochastic forcing variables enter into the players’
objective in a linear fashion, and are assumed to be normally distrib-
uted. The two player assumption can be relaxed, subject to computa-
tional constraints, but the other assumptions cannot. The purpose of the
other assumnptions is to facilitate econometric application by allowing
linear least squares projections to be used in place of conditional

means. In terms of notation, let

be a column vector of decision variables of player 1
(abbreviated P1) at time t;

Uy be analagously defined for player 2 (P2);

Fis be a column vector of uncontrollable forcing variables influ-

encing P1’s payoff at time t;
th be analogously defined for PZ;
B € (0,1) be a discount factor common to both players.

P1’s objective is given by:
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where A(L) and B(L) are matrix polynomials in the lag operator L, of
finite dimension and degree; Ml’ MZ’ M3, Ni‘ NZ’ and I\]3 are matri-
ces of the appropriate dimension; M,, MZ, Ni’ and N2 are symmetric,
EO is the expectations operator , conditional on information available at

time t = 0. P2’s objective is given by
< o
ig =By & F {fZ'L gy = [CRIuRl I 1C0 Uy, ]
t=0
= DL uy]” 2P, [DL) uy, ]
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where C(L) and D(L) are finite dimensional, finite degree matrix poly-
nomials in the lag operator L; Pi* PZ’ P3, Qi’ QZ’ and Q3 are matri-
ces of the appropriate dimension; Pi’ PZ’ Q T and QZ are symmetric,
and EO is defined as before. The definiteness conditions
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are assumed to be satisfied for w € [-m,7u].

The uncontrollable forcing vector process Xt = {f “’ f2t’ ]* is assumed
to be Gaussian and to have tirne invariant fundamental moving average

representation

X, =FL) v +K (2.2)

where v, is vector white noise, and K is a constant. In the analysis that

follows,‘K is normalized to equal to zero.

Each player i seeks to maximize his objective by choosing a sequence
of strategies {g,,} . Each strategy maps the player’s information (1)
into a decisicn taken at time t, i.e. Uy = gitﬂit)'

riate specifications of information sets are given for the three dynamic
3

games considered.

Below, the approp-

Game 1 (Open Loop Nash): Let I, represent the information set gene-
rated by the initial conditions for all variables in the model, and let Qt
represent the information set generated by the shocks Ver Vi[5 Then

for P1 (superscripts indicate the game number)

1

_— e (0 6]
iy = ViU {{th}tzO} * (2.3)

while for P2



g
IZt = Qt U IO U {{git}t:O } 4 (2.4)

Here, g? and gs are anticipated strategy sequences. An equilibrium is
a pair of strategy sequences [gi1 ’ gé ) such that gi1 and gé are optimal
for P1 and P2 respectively, when gf: gy and gs = 5.

Notes on Game 1

The strategy sequences g  and g, are required to be optimal for
almost every realization of {Vt}‘ They are also restricted to be affine in
{Vt} , and the resulting sequence of equilibrium decisions must be
"stable," i.e. of mean exponential order less than B"é. The restriction
to affine strategies allows for use of the certainty equivalence principle,
while the mean exponential order assw"rlptior}1 provides for a convenient
resolution of some nonuniqueness problems, These restrictions will
apply in all games considered in this paper.

Because the information sets in Game 1 contain no state variables
other than uncontrollable shocks, this sort of game is described by
dynamic game theorists as "open loop." Games in which controllable
state variables appear in players’ information sets are described as
"closed loop" or "feedback" games. As emphasized by Kydland (1975)
and others, the equilibria of open loop dynamic games will in general be
different from the feedback or closed loop equilibria. The open loop
approach taken in this paper is justified largely by computational con-

siderations. Particularly for econometric applications, the open loop

S



procedures discussed below may offer considerable gains in computa-
tional convenience over the procedures used to obtain closed loop and
feedback equilibria.

It is also important to note that each player’s information does not
include knowledge of the other player’s future decisions, but instead
knowledge of the other player’s future strategies. The distinction be-
tween decisions and strategies is an important one. The strategy se-
quences are determined once and for all at the beginning of the game.
Decisions are taken simultaneously by both players in every period.

Game 2 (Open Loop Stackelberg): For P1 (the leader)

2 i
Iit =0, U IO (2.9)

while for P2 (the follower)

o= boy (2.6)

An equilibrium for this game is a pair of strategy sequences (g‘;Z ; g% )
such that g, is optimal for PZ when g? = g% , and g% is optimal for P1.

Notes on Game 2

In this game, P! is not constrained to take P2’s strategies as given,
but is free to exploit the dependence of P2’s choice of strategies on the
choice of gy. In equilibrium, the value of P1’s objective is necessarily
no less than in the Nash game.



One interesting feature of Game 2 is that the same equilibrium ob-
tains if the information of the follower is changed to

* o
Ly=¥ U {{8ft}t:o} , (2.7)

where W, represents the information set generated by the entire past
history of all the processes in the model, including endogenous proces-
6

5e8,

In Section 3, it is shown that the equilibrium of Game Z will in
general be time inconsistent. That is, the original equilibrium strategy
sequence g;f will generally not remain optimal as tirne passes. Without
some mechanism to guarantee that P1 will hold to the initial equilib-
riumn strategy sequence, the equilibrium of Game 2 is not viable. For

this reason, another sort of Stackelberg game is considered.

Game 3 (Time Consistent Stackelberg Game): P1’s information is given

by

3 2

Iitzlit ? (2.8)
while P2’s information is given by

3 %

I2t = IZt (2.9)

Equilibrium is defined as in Game 2, except for an additional restriction

on the strategies of P1. That is, in choosing a time t strategy, P! is
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constrained to ignore the impact of of this choice on P2Z’s choice of
strategies dated before time t. In other words, in choosing gft , Pl

must take as given g%s for s < t.
Notes on Game 3

The distinctions between Game 2 and Game 3 will be clarified in the

next section.

One distinction that deserves immediate mention is that in Game 3,

*
P2 must be allowed access to the "larger" information sets { IZt }e
That is, if PZ were allowed access only to 122t , the same equilibrium

would no longer obtain in Game 3.

Because of the additional restrictions on the strategy sequence g, ,
the equilibrium value of P1’s objective in Game 3 can be no larger than
in Game 2. It will in general be quite difficult to compare Games 1
and 3 in this fashion, since both players’ information sets differ across

the two games.



3. Solution Procedures

By "solving" the models described in Section 2 is meant the fol-
lowing: for each of the games, the first order conditions of the two
players will be reduced to a set of finite order expectational difference
equations. These equations, in turn, can be solved for equilibrium laws

of motion in the variables u It and U, using known methods for solving

t
linear rational expectations models. Explicit formulas for the equilib-

rium strategy sequences are not derived.

The solution procedures make heavy use of the techniques developed
by Hansen and Sargent (1981). Especially useful are the following dif-

ferentiation ruies. Suppose that {Xt} and {yt} are sequences such that

2t
Sy = 2 B [ally)’ B [elx]
t=0

and

S, = 3 £ [dDy,)" §F ([dLy,]
t=0

are finite, where a(l}, c(l), and d{l) are matrix polynomials in the lag

operator, and B and F are appropriately dimensioned matrices. Then

O1) 85,/ 3y, =B alBL™) 'Belix,
02) 85,/ dy, = £ d(BL™) " Fdll)y,

2



Certainty equivalence is also exploited, in that the models are first
solved for conditional means. Terms involving expectations are then

evaluated using Wiener-Kolmogorov prediction formulas.
Solution of Game 1

To initiate the solution procedure suppose that P{ knows the sequence
of equilibrium strategies {gét} of P2, Tt follows that, as of time t, Pt
knows the current and past decisions of P2, and that P! can correctly
forecast P2’s future decisions. The necessary first order conditions for

P1’s optimization problem are then

-1 a4
[N, +A(BL )’MiA(L} Epuyy + INg+ASL }’MBB(L}] E, usy
=f . 101,20, 3.1)
where again E, represents the conditional expectations operator. The

operators L and L.~ are defined as follows for the sequence of condi-

tional means Etult L [Etu“] = Et~1ut—1 , and L_1 [Etuit] = Etgt+i .

i.e. negative powers of L do not shift forward information sets. The

first order condition for PZ is similarly given by

[Q3+D(EL 1Py CIL T Eypuy, + [Q,+D(BL™) 7P ,DWL)] E,u,y
=fy 4 t=0,1,2, 0, 3.2

Now stack equations (3.1} and (3.2) to obtain the system
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where
Up=lug"ug"17 , and

-

N, + A(BL-i)’Mi AL)  Ny+ A(BL‘H'MS B(L)

Q3 +DELHP,CL) Q,+D(EL P ,DWL)

Equation (3.3) is an expectational difference equation of the type ana-
lyzed by Hansen and Sargent (1981), Whiteman (1983, chapter 4), and
Watson (1985) , among others. What follows is a brief outline of the
Hansen-Sargent-Whiteman approach to solving systems such as (3.3).

First, suppose that H(L) can be factored as
HOL) =sEL )/ T 3.4)

where S(z) and T(z) are appropriately dimensioned one sided matrix
polynomials of degree n, n being the largest degree of the matrix poly-
nomials A(z), B(z), C(z), and D(z). It is further assumed that the roots
of det T(z) are distinct and outside the circle |z| = ﬁé, and that the
roots of det S(;Bzﬂi} are distinct and inside this circle. One can then
write S(BLﬂi)’ -1 in partial fractions form as

11



syt 2 (3.5)

. L-zZ,

J J
where the N, are matrices of the appropriate dimension, and the z. are
the roots of det S(ﬁz_i}. Since, in equilibrium, both players’ decisions

must be of mean exponential order less than § ¢, operating on both sides
of (3.3) with S(BL™ )" 1 yields

TL) U, = S E f, . (3.6)

Finally, using (3.5) and the Wiener-Kolmogorov prediction formula,

(3.6) can be expressed as

N.
J

L -2,
‘]

[ LML) - 2, F[ZJ)] v

Again the summation is over the roots of det S(ﬁz"i). Equation (3.7)
is a "feedforward-feedback” representation of U, that, together with ini-
tial conditions, gives the unique stable solution to equation (3.3).
Methods by which systerns such as (3.7) can be estimated are described
in Hansen and Sargent (1980).

)
Solution of Game Z

To initiate the solution procedure for the Stackelberg gamne, suppose

that P2 knows the sequence of equilibrium strategies of P1. Then, as

12



in the Nash game, P1’s current and past decisions will be known to P2,
and P2 will be able to correctly forecast future decisions of P1. P2’s
first order condition will be the same as in the Nash game, i.e. equation
(3.2). Since P2 (the follower) now takes P1’s strategies parametrical-
ly, it will be convenient to rewrite (3.2) as

[QZ + D(BL'i)’PZD(L):I E, Uy,
= - [ Qg + D(BL'i) : P, C(L) ] Ey uyy + 5 (3.8)
The characteristic polynomial of equation (3.8) has factorization

D(gz™")’ P, Dl2) +Q, = G(fz )’ Gla) 3.9)

where G(z) is a polynomial having degree equal to that of D(z), and the
roots of det G(z) exceed f* in modulus. Again requiring {u, } to be
stable allows equation (3.9) to be solved forward, yielding

Glbiug, =GELH ™ { -] Q3+ DB PLCL] B, wyy +15

L e R (3.10)

Equation (3.10) can be thought of as a "closed loop" representation of the
sequence of optimal decisions {u,,}. The members of this sequence are
expressed in (3.10)as a function of lagged values of Usys and current

13



and lagged values of u i and th (after making the appropriate substitu-
tions for terms involving expectations of future variables). Using this
representation, one could go one step further and derive the sequence of
optimal open loop strategies for P2 by operating on (3.10) with cw 'l
However, for the present purpose of deriving the equi?librium law of

motion for u,, and u,, , this extra step is not necessary.

t

The next step in solving Game 2 is to formulate P1’s problem as a
constrained maximization problem

max Ji s. t. (3.10) .

The Stackelberg leader P! in effect chooses a strategy sequence for
both players. However, the strategy sequence chosen for P2 rmust be
chosen so that it is optimal for PZ, taking P1’s strategies as given,

i.e. the resulting sequence of decisions {UZt} must satisfy (3.10).

To solve the leader’s problem, form the Lagrangian expression

igq



< ot
Co 2 10! [— GL) uy,
t=0

+ L™ (B, - Qg+ DEL)PLCWIT B uy, } ]

Here {A;} is a vector Lagrange multiplier process, of the same dimen-
sion as Uoye Fort <0, )\t is defined to take on a value of zero. First
order conditions for the leader’s maximization problem are obtained
by differentiating £ { with respect to Uy, » and Ung s and are given by

[N +ABL ™) My AL) 1Eguy, + N3 +AGBL ) MyBLI E,uy,
+ [0y + CBL Py DL 1 G i (3.11)

[N, +B(BL™)"Ma’AL) 1 Eyuy, + IN,+B(BL 1) "M, B(L)] E, uy,

+aeL APt L (3.12)

and the constraint (3.10), fort = 0, 1, 2, *** . Making the substitution
1, = L'\, , operating on (3.10) with G(BL™)’, and stacking (3.11),
(3.10), and (3.12), one obtains the system

1w E, u’”t = ><"'t ‘ (3.13)
where
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Equation (3.13) can also be derived by taking P2’s first order condition
(3.8) as the constraint in P1’s optimization problem.

As with the Nash game, equation (3.13) can be solved by factoring
H*(L) when H*(L) posesses the "right" factorization. The result is a
feedforward-feedback representation for the augmented decision vector
U*t ,» which together with initial conditions yields the solution for Uwt
and hence for U, .

Of particular interest are the initial conditions for the vector ﬂt of
Lagrange multipliers. At the beginning of Game 2, note that the correct
initial conditions for 1, are given by J, =0 fort < 0. However, as time
evolves, Jt will in general take on nonzero values. Now consider a
dynamic subgame of Game 2, beginning in period r > 0. For any such
subgame, the solution of P1’s problem would require that §; be initial-

1&



ized to zero for t < 7. Hence the equilibrium for the subgame will be
different from the original equilibrium, and the optimal strategy se-

guence for the leader is said to be time inconsistent.
Comparison with Whiteman’s Technique

Whiteman (1985) has proposed an alternative technique for solving
for the equilibria of games such as Game 2. Whiteman’s method differs
principally from the one presented above in that (1) the leader’s problem
is formulated in the frequency domain; and (2} rather than using La-
grangian methods, Whiteman in effect substitutes equation (3.10) into

the leader’s objective.

*
To compare the two techniques, it is useful to rewrite H (L) in the

form

- —-||'

Hy L H, H,0”
H L) = | Hy @  Hy) O , (3.14)
Hi,7 Hyp Hys(l)

where the double prime indicates transposition and "f-conjugation.”
Now use (3.12}), i.e. the last component of (3.13), to eliminate Et Rt
from (3.13), yielding

i7
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-1 7 ’
£, u f
v t 1t _ It , (3.15)
By gy Dot

which [ abbreviate as @(L) Et Up = X, - Alternatively, equation (3.15)
could be derived by using equation (3.10) to substitute out for Et Uoy in
P1’s objective J,, and differentiating J, with respect to E, uy, .

Essentially, the alternative technique proposed by Whitermnan involves
factoring ©(L) and applying the Hansen-Sargent solution algorithm.
Since @(L) can always be obtained from Hﬂr (L), this approach could also
be used with the methods presented above.

Sorne care must be exercised with this approach, however. In obtain-
ing equation {3.13), equation (3.12) was operated on with H22(L)41,
which is in general a matrix rational function (or two-sided infinite
order matrix polynomial) in the lag operator L. Since (3.12) is only
guaranteed to hold for nonnegative time, this operation will only be jus-
tified under special circumstances. For example, this operation will be
justified when both players® objectives have been normalized so that all
variables take on a value of zero for negative time. This operation is

also justified if one is only interested in the steady state of the particu-

18



lar game under consideration.

Solution of Game 3

The time inconsistency of P1’s strategy sequence in Game 2 results
because P1’s choice of strategy g,, for t > 0 has an effect on P2’s
choice of strategy g, for 0 <s <t. Attimet, if Pl were to recaleu-
late his optimal policy sequence, these effects would no longer matter,

causing P1 to change his choice of strategies.

These effects enter into the first order conditions for P1’s problem
only through the presence of lagged values of A, in equation {dd}.
Since, in Game 3, P1 is required to ignore these effects, (3.11) must
be replaced by the following first order condition:

[N, +ABL™) My AL) 1 E,uy, + [N3+A(3L‘1)'MSB(L)] E, Uy,

+ {[ Q3" + C(ﬁL'i)’PB’ DL ] G(L)“l} K= (3.16)

where the notation { } _ means to ignore positive powers of L. Equations
(3.16), (3.10), and (3.12), which correspond to the new first %r'der
conditions for P1’s problem, can now be stacked to yield the system

C G
H(L) EtUt_xt (3.17)

where

i9
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HE (L) = H,, (L) Hys) 0 ,
77 C
Hi Q7 Hyp@) HS40)

HE5 L) {[ Q4+ CeL Py’ DU | G(u‘i} , and

ceL ) .

Hi

Hys (L)

A characteristic feature of HC[L) is that its rightmost "column” in-
volves no positive powers of L. This means that if HC[L) has canonical
factorization HC(L) = Sc(ﬁLﬁi)’TC(L), and TC(O) is normalized to be a
diagonal matrix, then the last "column" of TC(L) must be all zeroes.
This last fact in turn implies that in equilibrium, the current value of
Uct does not depend on past values of A, . Hence the time path of U,
will be independent of initial conditions for A, , and the strategy se-
quence for P1 will be time consistent.

Another interpretation of Game 3 would be as a game played by a
follower PZ and an infinite sequence of Stackelberg leaders. The time t
leader has an objective given by a time t version of J {0 and chooses
U, so as to maximize this objective. The time t leader cannot cornmit
to future values of u,, , although he can correctly forecast these deci-

sions in equilibrium. For an example of how the solution of Game 3

20



can be derived under this interpretation, the reader is referred to
Hansen, Epple, and Roberds (1985).

Whiteman (1985) has also proposed a method for solving Game 3.
As with Game 2 , one can essentially replicate Whiteman’s method by
eliminating the Lagrange multiplier process from eguation {3.17), and

solving the resulting expectational difference equations.

2]



4. Examples

Below are presented examples of models where the methods of Sec-
tion 3 may be applied.

Example 1: Whiteman’s "Generic Example"

Whiteman (1985) considers a very simple two player game between a
hypothetical policymaker and a player representing "the public." Al-
though Whiteman’s model differs slightly from the class of models con-
sidered in Section 2, the solution methods presented above are still

applicable.

In this model, the policymaker plays the role of P1 and the public the
role of P2. The scalar forcing process ft is first order autoregressive,
and uy, and u,, are both scalars. P1’s objective is to minimize the
discounted weighted sum of expected fluctuations in the decisions of

both players, i.e.

o
- t[ 2 2
Iy = - $E5 26 [u2t+qu1t:l .
t=0

Here, n is a positive weight. F1's objective is thus to stabilize fluctua-
tions in u,, , subject to a quadratic cost associated with policy interven-
tions. PZ has an essentially static objective: in each period, choose a

minimum mean squared error forecast of

22
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where [p| > ﬁ_i. The optimal estimate of y, will be given by

P Aot
lyy 297 (Vg N ™ (B, # B REL, (4.1)

which corresponds to equation (3.2).

To begin the analysis of this model, note that the optimal strategy for
P1 in Game 1 is to set u;, = 0 for all t. Since P1’s objective is to
stabilize u,, , if P1 takes P2’s strategies as given, then P1’s optimal

strategy sequence is the trivial ore.

In Game 2, the Lagrangian for the leader’s problem is

0
2 4 B 2
Iy =Eyi28 [U2t+’7”1t}
t=0

b ~1y-4

et s g [ u sl i g uaes Flus
0 Tl o T ety FE A

t=0

The first order conditions for the leader’s problem will be (cf. equations
(3.11) and (3.12))



nug te (- @ LN =0 (4.3)

Usy + )\t =0. (4.4)

Note that equation (4.3} is valid when A, has been normalized to zero

for negative t.

One approach to solution of equations (4.1), (4.3), and (4.4) would
be to stack those equations and apply the method outlined in Section 3.
Because of the very simple nature of the model, however, it is easy to
solve by direct substitution. First, use equations (4.3} and {4.4) to
solve for Usy s which yields

Gy =mp (- (B Ly, (4.5)

Equation (4.5} holds for positive t; if Uy _y is normalized to zero, then
it also holds for t = 0. Equation (4.5) can then be substituted into

(4.1), and the resulting equation operated on with (L b p) to obtain

-1

L - g g7 - p) - 11E uy, = 1, (4.6)

Hansen and Sargent (1980} show that when ft follows the autoregressive

law ft = th—i + € equation (4.6) has solution

Uy = 04Uy oy * [co‘i,/ (-1, , 4.7)

|

where -n (z_i*p) (ﬁ_iz—p) + 1 can be factored as cq (1—012] (1-022' ),

24



cg <0, and ¢y, ey € (0,1). The optimal strategy for P1 thus consists
of partially offsetting the effect of the current shock f,, subject to a
"correction” of CeUf g - The time inconsistency of this strategy is
manifested in the fact that equation (4.7) only holds for t = 0 if u £t
has been normalized to zero. If P1 were to recalculate an optimal
strategy sequence starting at some time t > 0, then U ei would have
to be set to zero, resulting in a different choice of strategies.

To find the optimal time consistent policy for P1, note that in Game
3, the leader’s first order condition (4.3) must be replaced with

=4
nug, +p A =0 . (4.8)

Using (4.8) and (4.4) to eliminate Uoy from equation (4.1) then implies
that

-1 2 jo*
Lnpl. ® < [np~#i]] Et Ult"ft . (4.9)

2

Defining dy = ~(14np™) , and d; = Qp/(1+qp2) , equation (4.9) can be

solved for Uy to obtain
g =l >
uit"dO ft/[i diy) . (4.10)

In Game 3, P1’s equilibrium strategy sequence is by construction
time consistent. This is reflected in the fact that, unlike equation (4.7),
equation (4.9) will hold for all t 2 0, and need not be modified for the
initial period.

25



For Games 1-3, the equilibrium sequence of decisions for Uy, can be
derived by substituting the appropriate expression for P1’s equilibrium

strategy sequence into equation {4.1), and evaluating expectations.
Example 2: Linear-Quadratic Duopoly Models

In Hansen, Epple, and Roberds (1985), the methods of Section 3 are
applied to a model of a duopolistic industry that extracts a nonrenewable
resource. These methods can also be applied to other linear-guadratic
oligopoly models. As an example, consider Kydland’s (1979} model of
an industry where there are adjustment costs.

In this setup, there are two firms in the industry. Entry by other
firms into the industry is not possible. Firm 1 produces output Yis and

invests amount x,, over period t. Investment is determined as

t
VIR TR AT (1-9) Yit (4.11)

where & is the depreciation rate. The real cost of investment X;y to

firm i at time t is given by

g, + ey, - Sy )” (4.12)

2. ¢ o0,

represents the adjustment cost associated with changing the firm’s capi-

where g is the unit cost of capital and the term C(Xit_dyit)

tal stock. Each firm seeks to maximize
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d |
t 2
Jj=Eg 28 [ptyit = Gy - oy = Oy w * tA
t=0

where p, is the real price of the firms” output at time t, net of any con-
stant unit production cost. This price is determined by a linear inverse
demand function

Pt = at p a[Y1t+ th] s (4.14)

where a, is a random shock to demand and a is a positive constant. To

map Kydland’s model into the notation of Section 2, set

Yit = Vit (5.13)
A(L) =B(L) =CL) =DL) = (1-L) 5 (4.16)
f, = Ba,q - 1-BU-0g) ; 4.17)
M1 =P2=2c; (4.18)
M2:M3=N2=P1:P3:Q1:0; | (4.19)
Ni = 2N3 = QZ = 2Q3 =fa . (4.20)

Similar substitutions can be used with other duopoly models. It is
also easy to modify the objective of the second player so that P2
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represents a "competitive fringe" of small firms that see themselves as
1o

having no impact on the price of the industry output,
Example 3: Optimal Growth with a Public Good

As a final example, I consider a simple model of macroeconomic
gr‘owtht.I In this model there are two consumption goods and two capital
goods. There are two representative agents, Pl being the "government”
and P2 being a representative nongovernmental agent, called "the private
sector.” One type of capital good (call this m) can only he accumulated
by the government. However, the government makes this capital good
freely available to the private sector. The other capital good {call this
k) can only be accumulated by the private sector. The stock of govern-
mental or public capital as of time t evolves as
(4.21)

m, =Y My +Zt"

where Z is current governmental investment, and y equals one minus

the depreciation rate d. Governmental investment z, must be financed

by lump sum subtractions from the stock of private capital at time t
k(. Conversion of private capital into public capital incurs an adjust-
ment cost b 1(zt—c5mt)2. When z, is negative, this is interpreted as a

t
governmental subsidy of private investment. Such subsidies also incur
adjustment costs., The government is not allowed to borrow or lend,
and governmental ({dis)investment must equal the amount of lump sum

taxes (subsidies) in every period.
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Private capital k, is assumed to accumulate according to the law

k= Tk +1, =2, » (4.22)

where i, is private investment. Associated with a level of investment
. . : 2
i, are adjustment costs 3b,,(i,-dk,)”.

The capital goods m, and k, are used to produce consumption goods g,

t

and ¢, . Neither g nor c,

according to the linear technology

are storable, and these goods are produced

g Ay A m
5 B & B t . (4.23)
c A k

t i SRR
The additional restrictions are imposed that A, , > A, 22 0, that Ay, >
A2 0, and that the A matrix is nonsingular. If one thinks of g, as a
"public” consumption good, and c, as a "private" consumption good, these
assumptions imply that both kinds of capital may be used to produce
both kinds of consumption goods. Governmental capital is more produc-
tive than private capital in the production of the public consumption
good g, and vice versa for the production of the private consumption
good c,.

The utility associated with consumption (g, ¢,) is assumed to be of

)
t
the quadratic, additively separable variety:

w2

U,y lgys ) = -4, (g8 )% - 4(1-6)) (e, ) (4.24)
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for i = 1, 2, where g)'r and c:’“r are bliss points and 1)61>O. Both the
government and the private sector seek to maximize the discounted sum
of their respective utilittges, minus the discounted costs of governmental
and private investment.  After some substitutions, these problerns can

be shown to be equivalent to the following:

max —.]i , Where
oo
1=3 S {ui m-m )%+ w (k, -k )2

* * , 2
+ 2vi (m, -m )[ktFk ] + b [(1"¥L)kt_]

# (ortha) [U-yLm? + 2, {10k [(1-yUm,] }

* *

In the expression above, m and k are the stocks of capital necessary
* *

to efficiently produce g and ¢ . The terms Ujs Vj» and w; are defined

as

S A . (4.25)

The model described above may be directly mapped into the setup of
section 2 using the following substitutions:
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(4.26)

U

Upy = kt : (4.27)
A(L) =BL) =CL) =D({L) = (1-yL) 3 (4.28)
£y, = um vk (4.29)
—th = vzm*+w2k . : (4.30)
Mi = Pi = b1+b2 3 (4.31)
M2 = PZ = bz ; (4.32)
My =Py = by 3 (4.33)
leui;NZ:wi;N3=v1; (4.34)
Q=30 =Wy 3 Q3 = v, . (4.35)

*
In addition, the term (vim +w1k*) kt must be subtracted to the govern-
ment’s utility function.

Simulation of Example 3

Two possible reasons why one might want to want to simulate this
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model are described below. First, in the case where 6 | = 82 and the
government and private objectives coincide, it might be a useful norma-
tive exercise to derive the equilibrium sequence of taxes z, under
various assumptions concerning the type of game played by the goverm-
ment and the private sector. Since the preferences of both players

would coincide, this tax sequence would be optimal for both players.

It is well known that for this sort of policy probiem, where there is
only one private agert and the government can impose lump sum taxes,
that the equilibria of the three games studied in this paper will coin-
f:ide.ld Hence to derive the optimal path of taxes, investment, capital

stocks, and consumption goods, one need only solve Game 1 (Nash).

Another reason for simulating this model would be to investigate the
effect of "perverse" governmental preferences on the equilibrium paths
of the variables in the model. For example, it might be the case that
those responsible for the setting of governmental policy prefer higher
levels of consumption of the public good g, than does the private sector,
i.e. 64 > 6,5 . Insuch cases, the three games studied in this paper are

likely to result in different equilibrium outcomes.

As an illustration, three simulations of the model were run, using
the following hypothetical parameter values. For the first simulation,
the values § = .926, AH = AZZ = 1.25, AiZ = A21 =.75, b1 = b2 =

20, and 61 = 82 = .15 were used. Bliss points for ¢, and g, were set

t
to a value of 100. In the first simulation, Game 1 was simulated over

100 time periods, given initial conditicns k_i =my = 10. In the
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second simulation, Game 1 was again simulated after 0 was reset to
5. In a third simulation, Game 2 (Stackelberg) was simulated using
the same parameter values as in the second simulation. Game 3 was
not simulated because numerical investigations indicated that the neces-
sary potl)/nomial matrix factorization did not exist for these parameter

values.

The outcomes of these three simulations are depicted in Figures 1-4,
and are labelled respectively "Optimal" ( i.e. optimal from the stand-
point of the private sector), "Game 1," and "Game 2." Figure 1, which
depicts the time path of m,, shows that when governmental and private
sector preferences coincide, the government will initially subsidize
private investment by converting governmental capital into private capi-
tal. In contrast, when the government overvalues the public consumption
good g, public capital increases monotonically over time. The steady
state stock of governmental capital also increases dramatically in the
second and third simulations. Figure 2 shows that governmental over-
valuation of g, causes the steady state level of private capital to fall
dramatically. Figure 3 depicts the time path of g, as a percentage of
its bliss value. As might be expected, stronger preferences for g, by
policymakers lead to overconsumption of the public good. Figure 4
shows that the opposite holds true for the private good Cy»

In general, Figures 1-4 illustrate that the effects of governmental
overvaluation of the public consumption good are what one would in-
tuitively expect, i.e. overinvestment in public capital and underinvest-

ment by the private sector, with corresponding shifts in consumption,
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The negative effects of this overvaluation are somewhat less (in the
sense that deviations from optimal values are smaller) in the Stackel-
berg game, where the government is (by assumption) able to credibly
precommit itself to a sequence of tax policies,
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Appendix: Notes on Numerical Implementation

There are a number of methods of obtaining the factorizations of the
*
HIL), H (L), and HS(L) matrix polynomials that are required by the solu-

tion procedures outlined above,

One simple method is to use the procedure suggested by Whittle
(1983) for factoring the spectral density matrix of a vector moving
average process. This method was used in the simulations of Example
3. In each simulation T(Q) or T*(O) was normalized as the identity
matrix. In the case of Game Z, using this normalization required that
the second and third rows of H*[L) be interchanged so as to render T*(O)
diagonalizable. This last step is recommended when using this algo-
rithm for Games 2 and 3.

Dagli and Taylor {£984) have also devised an iterative algorithm for
the purpose of obtaining such factorizations. For large systems, this
algorithrn is easier to implement than Whittle’s algorithm. As an itera-
tive algorithm, it would seem to be particularly well suited to econome-

tric applications.
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Notes

1. In the Stackelberg games considered below, the leader’s objective

will not be time additive after substitution for the fellower’s reactions.

2. These conditions are sufficient for each player’s problem to be well
defined in the Nash game (see Hansen and Sargent {1981)), and for the
follower’s problem to be well defined in the Stackelberg games. Suffi-
cient conditions for the leader’s problem can be derived using the re-
sults in Telser and Graves (1971, chapter 6).

3. The term "information set” is used here in the game theoretic serse,
i.e. a player’s information set as of time t is the domain of his strategy
function as of time t. The notation used below for information sets is

intentionally heuristic.,

4. That is, under this assumption one can often show the existence of a

unique homogeneous solution to the players’ first order conditions, See

Hansen and Sargent (1981) for a discussion.

5. The term “open locp" is usually applied to games under certainty,

i.e., the case for which v, = 0 for all t in the setup above. Buiter’s

t
(1981) definition of "open loop" for the stochastic case does not allow
open loop strategies to depend on uncontrollable shocks. The above
definition of open loop strategies for the stochastic case corresponds to

that of Kydland (1975), except for the restriction that strategies be



affine.  The reader is referred to articles by Kydland (1975,1977) for

comparisons of open loop, feedback, and closed loop dynamic games.
6. See Basar and Olsder (1982, p. 309).

7. That is, the operator L as defined above is identical to the operator
B defined in Sargent {1980, p.337).

8. Throughout this section the existence of such factorizations will be

assumed,.

9. Levine and Currie (1984) derive a solution procedure very similar
to the one outlined above. Their procedure differs mainly from the one
above in that the leader’s problem is formulated using "state-space"

notation.

10. For an example of this sort of modification, see Hansen, Epple and
Roberds (1985).

11. All guantities in this example are per capita.

12, Alternatively, J; could be viewed as the discounted sum of con-

sumer surplus minus investment costs.

13. See Hillier and Malcomson {1984). When the government can only
impose preportional taxes, this result will not hold. See Sargent

(1984) for a comparison of Games Z and 3 in a proportional taxation
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environment.

14. Similar existence problems were encountered by Kydland and
Prescott (1977) while attempting to simulate a linear-quadratic time
consistent Stackelberg model. This suggests that existence problems
are likely to be encountered with Game 3.
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