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Abstract 

The consequences of a straightforward monetary targeting scheme 

are examined for a s imple dynamic macro model. The notion of "target

ing" used below is the strategic one introduced by Rogoff (1985). 

Numer ica l simulat ions are used to demonstrate that for the model under 

consideration, monetary targeting is l ike ly to lead to a deterioration of 

policy performance. These examples cast doubt upon the general eff ica

cy of s imple targeting schemes in dynamic rat ional expectations models. 
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i . Introduction 

A topic of considerable policy interest i s whether monetary targeting 

improves upon or detracts from the overal l performance of monetary 

policy. The theoretical debate on this subject has been quite intense, 

part icular ly after the Fed's 1979-82 targeting "experiment." While 

this debate continues to rage on many fronts, it has lately come to cen

ter on strategic issues. That i s , can monetary targeting improve upon 

the performance of monetary policy by improving the Fed's cred ib i l i ty? 

A recent paper by Rogoff (1985) strongly suggests an aff i rmative 

answer to this question. In the context of a stat ic macro model, Rogoff 

demonstrates that various intermediate targeting schemes may in fact be 

useful in overcoming the credib i l i ty problem inherent in a discretionary 

policy environment. 

The present paper could be viewed as a f i rs t attempt to examine the 

generality of Rogoff 's resul ts. In the analysis that fo l lows, the conse

quences of a s imple monetary targeting scheme are traced through for a 

dynamic macro model. Although analytical results are diff icult to ob

tain, numerical simulat ions suggest that for the model under considera

t ion, targeting is l ikely to lead to signif icant deterioration of pol icy 

performance. Nor does targeting lead to improved credib i l i ty of mone

tary policy. Instead, imposit ion of targeting often leads to errat ic 

short term fluctuations in both the money stock and the pr ice level . 



The analysis below should not be construed as a general condemna

tion of a l l monetary targeting schemes. Indeed, recent work by White-

man (1985) suggests that policy performance can always be improved by 

implementation of some targeting mechanism. However, the examples 

considered below suggest that s imple, intuit ively appealing targeting 

mechanisms can easi ly have the opposite of the desired effect. 

2 . The Model 

The model considered can be derived from Cagan's (1956) demand 

function for real balances, i.e. 

(1) l o g ( M / P ) t = a7r t + £ y t + ^ + U t , a < 0 , £ > 0 

where M is the demand for nominal balances, P the price level , ir^ the 

expected rate of inf lat ion, y^ the log of real income, \p a constant te rm, 

and U t a stochastic er ror term. Fol lowing standard pract ice, the values 

of a l l variables w i l l be interpreted as deviations about perfectly fore-

castible trends. In addition, the analysis below w i l l abstract from a l l 

real effects by taking f y t + \p to be identical ly zero. The process { } 

w i l l be assumed to fol low the stationary f i rs t order autoregressive law 

(2) U t = y U t - 1 + cre t , 0 < y < 1 

where 6* i s Gaussian white noise. Both private agents and pol icymakers 

are assumed to know the values of current and past real izat ions of U. . 



By imposing the rational expectations hypothesis and some relat ively 

innocuous side conditions, the money demand equation (1) can be solved 
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out as 

-1° ° - i 

(3) p t = -p 2 p J E t ( m t + j + u t + j ) 

J - 0 

where denotes expectation conditional on current and past U ^ s , p t i s 

the log of the pr ice leve l , m^ = l o g ( M t ) / a , u t = ^ . / a , ar>d P ~ (or- i ) /a . 

Equation (3) reveals the dependence of the price level on current and a l l 

expected future values of nominal money demand. The problem of set

ting monetary policy in this model i s thus an inherently dynamic one. 

Throughout, this paper it w i l l be assumed that the Fed can completely 

control the nominal money stock, which w i l l always be equal to 

nominal money demand in equi l ibr ium. The objective of the Fed w i l l be 

taken as to min imize a weighted average of the discounted sum of cur

rent and future fluctuations in the logarithms of the money supply and 

the price level , i.e. at t ime t the objective of the Fed w i l l be given by 

CO 

\ = E t 2 $ ( 1/2 P t + j + V 2 m t ; . ) , 1 > § > 0 , X > 0 

The objective of the Fed is thus taken as to stabi l ize the fluctuations of 

the money supply and pr ice level about their long term trends, taking 

equation (3) as given. 



4 
3 . Po l icy Rules Under Precommitment and Discret ion 

A s in v ir tual ly a l l rational expectations models, deriving "optimal" 

policy rules for the model described above requires a specif ication of 

the degree of precommitment of the policy authority. To begin, consider 

the case where the Fed can credibly commit i tsel f to an infinite se

quence of pol ic ies. In this case monetary policy i s determined once and 

for a l l at t ime t=0, conditional on a given sequence of shocks { e. }. 

This sort of pol icy environment i s sometimes referred to as a precom

mitment or "open loop" policy environment. 

The optimal precommitment monetary policy for this problem can be 

found using techniques outlined in Hansen, Epple, and Roberds (1985). 
5 

Setting the Fed's discount factor /? equal to one for convenience, the 

appropriate Lagrangian for the t ime t=0 policy problem is 
CO 

j : E E 0 2 ( i [ p t

Z + X m t

Z ] + 

t=0 
j CO _ . 

e t [ p t + p E t 2 p " J ( ™ t + j + u l + j ) ] } 
j=o 

where { 9^ } i s a sequence of random Lagrange mul t ip l ie rs . F i r s t order 

conditions for the precommitment problem are 

(4) A r ^ + p" 1 2 p " j V j = 0 

5 



(5) p t + e t = o 

Equations (4) and (5) hold for t £ 0. Solving out for r r y we obtain 

(6) IT IQ = (Xp) 1 P Q 

-1 -1 
(7) m t = p m t_j + (Xp) p t , t > 0 

The t ime inconsistency of the optimal precommitment policy i s mani

fested in the fact that the representation for rriQ in equation (6) dif fers 

from the representation for for positive t, given in equation (7). 

Equation (7) requires that "feed back" on m ^ after the in i t ia l period 

in which policy i s set. If optimal pol icy were to be reset at some t ime 

s > 0, however, equation (6) would require that m o _^ be ignored in set

ting m . Thus, without some mechanism to guarantee that the Fed 

would always stick to i ts or iginal plan, the precommitment policy i s not 

a credible one. Nonetheless, it i s useful to solve out for the precommit

ment policy as a benchmark to compare other pol ic ies against. In Ap

pendix A , it is shown that, the sequence of optimal pol ic ies fol lows the 

law 

(8) m t = c ^m t _ j + C Q U J . , t ^ O 

where i > c^ > 0 and C Q < 0 , subject to the in i t ia l condition m_^ = 0 . 

We next consider a policy environment of pure discret ion. In a dis

cretionary policy environment, optimal pol ic ies are recomputed in every 



period, so that announcements about t ime t pol icy that are made before 

t ime t are not credible. Given this sort of policy environment, one 

could think of policy as being set by a sequence of Fed pol icymakers. 

The pol icymaker at t ime t has the authority to set t ime t policy only. 

Although a policymaker may predict what future policymakers w i l l do, 

he cannot commit them to any predetermined course of action. Accord

ingly, the appropriate Lagrangian for the t ime t pol icymaker i s 

j=0 

^ [ P t + ^ E ^ P ^ t m + u t + j ) ] 

F i r s t order conditions for the t ime t pol icymaker are given by 

(9) A m t + p _ 1 e t = 0 

(10) p t + e t = o 

Solving equations (8) and (9) out for m t in turn yields 

(11) m t = ( A p ) _ 1 p t 

The time consistency of monetary policy in this environment is mani

fested in the fact that the representation for optimal pol icy given in 

equation (11) holds for a l l t. In Appendix A , equation (11) is shown to 

imply the fol lowing feedback rule for pol icy: 



(12) m t = f * u t , where f* = - [ 1 - A p ( y - p ) ] 

Since f* l ies between 0 and - 1 , optimal monetary policy in a d iscre

tionary environment consists of accommodating some fract ion of the 

current money demand shock . 

A s i s true for most policy problems in a rat ional expectations set

ting, the performance of the discretionary policy rule given in equation 

(12) w i l l be dominated by the performance of the precommitment policy 

rule given in equation (8). That i s , the value of the Fed 's loss function 

J . w i l l be greater under discret ion than under precommitment. How

ever, as pointed out by Kydland and Prescott (1977), there is no way to 

recoup this difference in a discretionary policy environment. To i m 

prove the performance of pol icy, some sort of mechanism must be intro

duced that w i l l augment the credib i l i ty of the policy authority. One 

candidate for such a mechanism is described in the next section. 

4 . A Simple Targeting Scheme 

There are two ma jo r reasons for considering the targeting scheme 

described below. F i r s t , this targeting scheme constitutes a reasonable 

dynamic generalization of one proposed by Rogoff (1985) in the context 

of a stat ic model, for the express purpose of overcoming a "policy cred

ib i l i ty" problem s i m i l a r to the one described above. Second, the target

ing scheme considered below is designed to m im ic , within the confines 

of the idealized model of this paper, several of the important aspects of 
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monetary targeting as practiced under the Humphrey-Hawkins Act . 

We should begin by explaining what i s meant by "targeting" in a s t ra

tegic policy environment. By requiring the Fed to "target" some aggre

gate variable, we mean to al ter the Fed 's objective function so that 

the Fed is penalized according to deviations of that aggregate from i ts 

preannounced target value. The idea is that by alter ing the Fed's incen

t ives, it may somehow be compelled to take policy actions that more 

closely approximate the precommitment pol ic ies that maximize i ts true 

objective . 

The targeting scheme we consider proceeds as fo l lows. For conven

ience the duration of the t ime period in the model is taken as six 

months. A t the beginning of each year, i.e. in every even numbered 

period, the Fed is required to submit a target value of the nominal 

money stock s ix months hence, i.e. in the subsequent odd-numbered 

period. In even numbered periods the Fed is free to set the nominal 

money stock at i ts discret ion, and i ts one-period loss function is the 

same as the one given above: 

2 2 L e ( p t , m t ) = i ( p t + X m t ) 

During odd periods, the Fed feels some pressure to meet i ts prean

nounced money supply tar-get, so that i ts one-period loss function be

comes 

L Q ( p t , m t , m t ) M [ p t + X m t + r ( m t - m t ) ] , r > 0 



where m^ represents the logarithm of the preannounced monetary target, 

divided by the parameter a. The objective(s) of the Fed are taken as to 

minimize 

j=0 

where L t + j = L Q ( ' ) for t+j odd, and U t + j F Lg(') for t+j even, taking into 

account the private sector 's reaction function given by equation (3). In 

even periods, the Fed maximizes by choice of two policy instruments: 

the current value of the logged money stock m. , and the choice of a tar-

get for the next period, m

t + ^ « During odd periods, the Fed can only set 

one instrument, the current value of the money stock. 

Several features of this targeting model deserve discussion. F i r s t , 

it should be emphasized that under the targeting model, the Fed is s t i l l 

operating in a policy environment of pure discret ion, although its objec-
* 

t ive function is changed. The monetary targets m^ cannot be inter

preted as either binding promises or optimal predictions. Except in the 

l imi t ing case where r = co there i s no constraint that targets be met 

exactly. Nor i s there an expl ic i t requirement that r n t + ^ represent an 

optimal t ime t prediction of , i.e. that m

t + j ~ mt+[ • Some 

pressure to target accurately does exist , however, because the Fed 
* 2 

wishes to d iminish the penalty term r / 2 ( mt,+ i ^ associated 

with deviations from the targeted money stock. The exact nature of this 

penalty is left to the reader 's imagination, while the parameter r i s 

assumed to be exogenously determined by the institutional setting under 

which monetary policy i s set. 10 



Another important feature of the targeting model i s that deviations 

from target are only subject to penalty at midyear, i.e. in the odd 

numbered periods. A s w i l l be seen in the next sect ion, this feature is 

important methodologically, since it a l lows the model to be solved using 

a s imple recursive algori thm. More importantly, this feature is meant 

to reflect the "conical" shape of the target bands that are actually an

nounced for monetary aggregates. The intuition is that deviations from 

target at midyear are penalized more heavily than deviations at yearend. 

This notion is captured in an abstract setting by imposing posit ive costs 

to such deviations at midyear, while assigning zero costs to yearend 

deviations. In the terminology of Broaddus and Goodfriend (1984), 

yearend "rebasing" of the money stock car r ies no expl ic i t penalty. 

5 . Equi l ibr ium with Targeting 

A computationally convenient way of deriving equi l ibr ium pol ic ies in 

a discretionary policy environment is to use the notion of "feedback" or 

recursive equi l ibr ium of dominant player dynamic games, as defined in 

Kydland (1977). Before using this equi l ibr ium concept to solve out for 

equi l ibr ium pol ic ies under targeting, it i s perhaps instructive to recon

sider the problem of setting discretionary policy without targeting, i .e. 

when r = 0. 

We begin by noting that for the model without targeting, there is only 

one dynamic state variable, i.e. the money demand shock u^ . We wish 

to consider feedback pol ic ies for the Fed, of the form m. = f(u.) . 



Given the l inear-quadratic-Gaussian setup of the model, we can res t r ic t 

our attention to l inear feedback rules of the form = fu^ . Let fg be 

our in i t ia l guess as to the value of the optimal feedback parameter f*. 

If, at t ime period t, private agents believe that policy in a l l future pe

r iods w i l l be set according to the rule m^ = f k i ^ , then equation (3) may 

be evaluated as 

(13) p t = [ ( l + p " 1 y f 0 ) / ( y - p ) ] u t - p " 1 m t 

Now define the Fed 's value function V(u^) as the value of the Fed's 

objective h when the optimal feedback parameter f* is used in the cur

rent and a l l future periods. In equi l ibr ium, the optimal feedback param

eter f* must sat isfy, for any value of u^, the requirement that m^ = 

f * u t , where m^ solves 

(14) m in [ i ( p t

2 + X m t

2 ) + £E V ( u + | ) ] s.t. eqs. (2) and (12) 

where in equi l ibr ium, f* = fg . In Appendix B, it is shown that solving 

program (14) and imposing the condition that f* = fQ yields a feedback 

rule f* identical to that shown in equation (12). 

For more complex models, it is often dif f icult to solve out for equi

l ib r ium feedback rules direct ly. However, the recursive character of 

feedback equi l ibr ium suggests a natural algorithm for numerical compu

tation of feedback ru les. That i s , given an in i t ia l guess fg for f*, find 

the feedback rule that solves program (14), take as the next guess 

1 2 



for f*, and so on. The recursive nature of feedback equi l ibr ium also 

guarantees that equi l ibr ium pol ic ies w i l l be t ime consistent: in solving 

the program (14) at t ime t, note that the Fed is constrained to take a l l 

future pol ic ies as given. 

We now consider the problem of setting discretionary policy under 

the targeting scheme described in the previous section. Under targeting, 

it w i l l be important to distinguish between yearend (even) and midyear 

(odd) periods. In even periods, as in the model without targeting, there 

is only one state variable that influences the Fed 's one-period loss func

t ion, i.e. the shock u. . In odd periods, however, the previously an-

nounced logged money stock target m^ must be added to the l is t of state 

variables. Two decision var iables, the current logged money stock m^ 

and the midyear target r n ^ j , must be set in even periods, while only 

the current money stock is set at midyear. Consequently we consider 

pol ic ies of the form 

(15) m t = f 0 u t 

(16) m * , = f 4 u t 

for even t 

(17) m

t - gQ u t + g i m t f o r o d d 1 

In Appendix C, it is shown that when equations (15), (16), and (17) hold, 

equation (3) may be evaluated as 

(18) p t = dQUj. + d^rn^. + d2m t + ^, for t even 

1 3 



(19) p t = b Q u t + bjiri j ,, for t odd 

where the b's and d's are complicated functions of f g , f p gQ, g ^ , X , p, 

and y. Under targeting, equi l ibr ium feedback rules are determined by a 

four-tuple ( fQ , f ^ , gQ , g^ ) such that when t i s even, 

(20) rr^ = f 0 * u t and m * [ = t*^ 

and when t is odd 

(21) m t = g 0 * u t + g l * m t * 

where the rn^'s in turn solve the program 

(22) min 

m t+1 

L e ( p t , m t ) + ^ E t m i n L o ( p l + 1 , m t + 1 , m t + 1 ) 

" m t + l 

+ ^ E t W ( u t + 2 ) , t even 

subject to constraints (2), (18), and (19), where W(u t) represents the 

value of K, for t even when optimal pol ic ies are in effect, and the b's 1 • • * * 
and d s in (18) and (19) are evaluated at (fg , f ^ , gg , g j ). The 

equi l ibr ium feedback parameters can be numerical ly determined, given 

values for p, y , and X , by the iterative procedure outlined in Appendix 

C. The idea of this procedure is to take an in i t ia l guess (fg, f^, gg , g; j 



for the feedback parameters, use these values to obtain equations (18) 

and (19), and then a solution to program (22). The feedback rules i m 

plied by this solutions are in turn used to generate updated versions of 

equations (18) and (19), and so on, until an approximate fix point i s 

reached. 

6 . Numer ica l Simulat ions 

Because of the somewhat complicated nature of the program (22), 

analytical the targeting equi l ibr ium are somewhat dif f icult to obtain. 

For this reason, numerical simulat ions were performed to obtain some 

idea of the performance of pol icy under targeting. The results of three 

representative sets of simulat ions are reported in Table 1 below. 

In each of the simulat ions, a random number generator was used to 

create a r t i f i c ia l t ime ser ies of length T = 1000 for the money demand 

shock process { u(t) }. A rb i t ra ry values were assumed for y , p, and y , 

and the model was simulated under precommitment, discret ionary, and 

various targeting environments. The discount factor /? was taken as 

equal to one, and the policy objective was reinterpreted as an average 

cost objective. A s an approximation to 2T , the stat is t ic S was 

computed for every s imulat ion, where 

S = svar(p) + Xsvar(m) 



and "svar" means sample variance. For each s imulat ion, the perfor

mance index P I i O O l S / S ^ ) was calculated, where represents the 

value of S for the same parameter values, given a discretionary policy 

environment without targeting, i.e. where r = 0 . P thus gives the 

sample performance of pol icy in a given environment, as a percentage 

of the performance of the best consistent pol icy without targeting . A 

value of P under 100 indicates improvement. 

Before describing the results of the simulat ions, it may be useful to 

describe the effects of variations on the parameters X , p, and y on the 

potential gains in policy performance due to precommitment. F i r s t , 

setting X = 0 al lows the Fed to cost lessly offset money demand sur

pr ises (if targeting is not in effect) , so that the global minimum of 

= 0 can be attained in a discretionary policy environment without target

ing. Accordingly, one would expect the gains from precommitment to be 

smal l when X is close to zero. A s i m i l a r conclusion holds when y i s 

close to zero. This i s because in the l im i t ing case that y = 0 , the 

dynamic policy game inherent in the model reduces to a sequence of 

repeated stat ic games, which by definit ion are immune to dynamic con-
8 

sistency problems. F ina l ly , equation (3) reveals that when p becomes 

large, p̂  i s driven to zero. In the l im i t ing case that p = co, the problem 

of stabi l iz ing p̂  becomes t r i v i a l . Hence the effects of precommitment 

are l ike ly to be reduced when p is relat ively large. 

For the f i rs t set of s imulat ions, the parameter values X = i . 0 , p = 

1.5, and y = .95 were assumed. The performance index P for the ideal 

precommitment environment indicates that the potential gains to pre-

16 



commitment for this example are signif icant: perfect credib i l i ty entai ls 

about a 23% decrease in the policy loss function. However, attempts to 

increase policy credib i l i ty via targeting were not successful. For the 

posit ive values of r that were tr ied, the implementation of targeting 

resulted in a deterioration of policy performance, i.e. values of P over 

100 percent. This deterioration is apparently increasing in the "str ict

ness" r of the targeting mechanism. 

In the second set of s imulat ions, the parameter values X = 10 .0 , p = 

1.1, and y = .95 were assumed. A s might be inferred f rom the discus

sion above, increasing the value of X and decreasing the value of p, re la 

tive to the f i rs t set of parameter values, results in an even greater 

potential gain in policy performance from precommitment. The value of 

the performance index P under precommitment is 37 .87 for this 

example, implying a 62% decrease in the policy loss function under fu l l 

credib i l i ty . Again, attempts to recoup this gain under targeting only 

resulted in deterioration of pol icy performance, with the degree of de

teriorat ion increasing in r. 

For some of the numerical examples considered, implementation of 

targeting did lead to gains in policy performance. Typical of these 

examples is the third set of simulat ions given in Table 1, for which the 

parameter values X = . 1, p = 2 .0 , and y = .5 were assumed. A s seen 

from the performance index column for the table, taking r = .05 in this 

example results in a decrease of about .5% in the policy objective func

tion. Larger values of r again lead to deterioration of pol icy perfor

mance. However the value of P for the precommitment case (94.08) 
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Table 1 

Parameter Values Pol icy Environment Performance Index 

x p y P {%) 

1.0 1.5 .95 Precommitment 76 .57 

Discret ion with: 

r = 0 100.00 

r = .1 100.03 

T = 1 . 0 102.91 

r = 10.0 114.51 

10.0 1.1 .95 Precommitment 37 .87 

Discret ion with: 

r = 0 100.00 

r = 1.0 102.44 

r = 10.0 116.22 

.1 2.0 .5 Precommitment 94 .08 

Discret ion with: 

r = 0 100.00 

T = .05 99 .46 

r = .1 102.48 



reveals that this example is one for which the magnitude of the dynamic 

consistency problem is not large. Even in an environment of perfect 

credib i l i ty , only about a 6% gain in policy performance can be attained. 

In summary, the numerical simulat ions reveal that the effect of tar

geting on policy performance is somewhat ambiguous. For some param

eter values, targeting resulted in gains in policy performance, while 

losses occurred for other values. The magnitude of the gains (under 2% 

in a l l the examples tried) tended to be quite sma l l relat ive to the magni

tude of the potential losses (sometimes over 50%). Moreover, the gains 

were always present in examples for which the dynamic consistency 

problem was relat ively unimportant, i.e. examples for which the values 

of X , p, or y were "close" to regions where the dynamic consistency 

problem does not exist. The larger losses were present in examples 

where potential gains due to increases in credib i l i ty were quite large. 

Some intuition concerning the fai lure of the targeting scheme con

sidered in this paper i s offered by Figures i and 2. These figures de

pict the responses of m(t) and p(t) to a -.1 standard deviation shock e(t), 

corresponding to a 1 standard deviation shock to money demand, where 

the parameter values X = 10, p = l . i , and y = .95 are assumed. 

Responses are plotted for the precommitment case, and for the d iscre

tionary case where r - 0 (no targeting) and r = 10 (targeting). 

Figure 1 shows the response of m(t) (here equal to -.1 t imes the 

response of the logged money stock) under the three environments. The 

optimal precommitment response is seen to require an in i t ia l rapid 



ser ies of increases in m(t), followed by a ser ies of gradual decreases. 

The discret ionary response without targeting consists of an in i t ia l rapid 

increase, followed by a ser ies of gradual decreases of m(t). The effect 

of the targeting scheme considered is to introduce osci l lat ions into the 

response of m(t). During the midyear (odd numbered) periods when 

targeting is in effect, m(t) i s biased towards zero, while during even 

periods m(t) is very close to i ts values under discret ion without tar

geting. Figure 2 shows that s i m i l a r , i f somewhat less extreme osc i l l a 

tions are introduced into the p(t) process under targeting. 

In the context of the model considered in this paper, Whiteman 

(1986) has shown that discretionary policy (without targeting) w i l l 

dominate a passive policy of always setting m(t) = 0. Hence it i s not 

surpr is ing that targeting, which seems to bias policy responses towards 

this passive pol icy, results in a worsening of policy performance. This 

bias towards zero is a direct result of the targeting mechanism, which 

assigns positive costs to active policy responses. Of course, these costs 

are assigned with the idea that they w i l l be more than offset by a resul 

tant increase in credib i l i ty . However, the parameter values in this 

example cause money demand shocks to have very persistent effects, so 

that the marginal benefit of a one-period-ahead commitment on the part 

of the Fed is quite s m a l l . 

7 . Summary and Conclusion 

The consequences of a s imple monetary targeting mechanism have 
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been considered for a dynamic model of price stabi l izat ion under ra 

tional expectations. Through the use of numerical examples, the effect 

of this targeting mechanism on policy performance in this model has 

been shown to be in general ambiguous, and to be negative for examples 

in which policy credib i l i ty i s an important problem. 

These highly styl ized examples cannot provide a general answer con

cerning the usefulness of targeting mechanisms in setting governmental 

pol ic ies. However, given that many rational expectations policy prob

lems closely resemble vectorizations of the one considered above, it 

seems unlikely that a rb i t ra r i l y applied targeting schemes w i l l always 

yield improvements in policy performance. Instead, the examples above 

strongly suggest that more research is needed on the strategic effects 

of monetary targeting mechanisms. 

2 1 



Appendix A 

Derivation of the Optimal Policy Rule (8) 

Substituting the portfol io balance schedule (3) into the Fed 's f i rs t 

order condition (7) yields 

(A l ) - X ( L - p ) m t = ( L _ 1 - p ) _ 1 ( E t m t + E t u t ) 

where the operator L i s defined as LlE^m^) = _^ , and L * as 

L (E ̂ m^) = E^.m^ + | . Equation (A l ) can be solved using the method 

outlined in Sargent (1979). Operating on (A l ) with (L ^ -p ) , we obtain 

the second order expectational difference equation 

(A2) [ - A d ^ - p j d - p l - i l ^ m ^ ^ 

Applying Sargent's technique then yields the solution for rn .̂ 

(A3) m t = c 1 m t _ i + [c^ V d ^ y ) ] i\ 

-1 -1 where-A(z - p ) ( z - p ) - i can be factored as c ^ l - c ^ z H i - ^ z ), c-^ < 0 

and Cj » C 2 ^ Equation ( 8 ) of the text fol lows i f we substitute C Q 

for [eg V u ^ y ) ] and note that the f i rs t order condition for the in i t ia l 

period (6) may be writ ten as (7), subject to the in i t ia l condition m_^=0. 

Derivation of the Consistent Policy Rule {11) 

Using the portfolio balance schedule (3) to el iminate p(t) f rom the 

f i rs t order condition (11) yields 
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(A4) [ X p L _ 1 - ( X p 2 + l ) ] E t m t = u t 

2 2 Defining CJQ = - ( i+Xp ) and d^ = Xp / ( i+Xp ) , equation (A4) can be 

solved using Sargent's (1979) technique to yield 

(A5) m t = d 0

- 1 u t / ( l - d i y ) 

The feedback parameter f* may be found by evaluating dg V ( l ~ d ^ y ) and 

s impl i fy ing. 

Appendix B 

Alternative Derivation of f* Under Feedback Equilibrium 

Begin by wr i t ing constraint (13) in abbreviated form as 

(Bl) p t = a Q u t + a 1 m t 

Since the Fed's value function V(Uj. + ^) does not depend on m^, solving 

program (14) i s equivalent to solving the s impler program 

(B2) min I [ X m , 2 + p t

 2 ] subject to (Bl) 
m t 

The f i rs t order condition for program (B2) i s given by 

(B3) (X+a^ ) m t + ( a ^ ) ^ = 0 

Substituting for the a's in (B3) and solving for m, yields 



(B4) m t = 
(x+p' 2 ) (y-p) 

u t 

Imposing the conditions m f = f *u. , f* = f n , and dividing (B4) by 14 

Appendix C 

Calculation of Feedback Equilibrium Under Targeting 

We begin by evaluating the publ ic 's portfol io balance schedule (3) 

when pol ic ies are set using the l inear decision rules (15), (16), and 

(17). Using prediction formulas from Hansen and Sargent (1980), it 

can be shown that equation (3) may be evaluated for even t as 

yields 

(B5) f* = - [ i - A p ( y - p ) ] -1 

(CI) p t = a * u t 

where 

(C2) a * = P f o ~ y § c r p g i f i + y + p 

~~1 2 
p - y 

When t is odd, equation (3) can be evaluated as 

(C3) p t = D Q u t + b^rrij. 

-1 -1 where O Q = p ( a * y - l ) , and b^ = - p . 



Now consider the Fed's optimization problem at some odd t ime t, 

i.e. the inner minimizat ion problem of program (22). Because the next 

(even) period's value function W ( u ^ + p does not depend on the choice of 

m^, this minimizat ion problem is equivalent to the s impler program 

2 2 * 2 * (C4) m i n £ [ p t + Xm. + r ( m . - m . ) ] s.t. (C3), m. given 
m t 

Solving program (C4) yields a solution for m t 

(C5) m t M r m l * - b 1 b 0 u t ) / ( X + r + b 1

2 ) 

Solution (C5) in turn impl ies the fol lowing values for gQ and g^ 

(C6) gQ» = - b 0 b 1 / ( X + r + b 1

2 ) 

(C7) g 1 ' = r / ( X + r + b 1

2 ) 

Now consider the Fed 's optimization problem at some even t ime t, 

i.e. the outer minimizat ion problem of program (22). Since the public 

knows that in the next period policy w i l l be set according to a rule of the 

form (17), the Fed should take into account the impact of i ts target 

announcement on the publ ic 's expectation of m ^ . Substituting (17) 

into equation (3) and taking expectations then yields 

(C8) p t = d 0 u t + d 1 m t + d 2 m t * 1 

where d Q = -p~ ( l+p~ [ ( l + g Q - y a )y]},d[--p~ , and d 2 = - p " g r 

A l s o , the Fed should take into account the impact of i ts target an

nouncement on i ts t ime t+i loss function, via the decision rule (17). 

Substituting (17) and (C3) into the t ime t+i pol icy loss function yields 
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(C9) L o ( P t + 1 . m l + 1 , m t + 1 ) = C ( r n t + 1 , u l + 1 ) 

where 

C l m * ! , ^ ) 2 1 ( C j U ^ 1 + c 2 m * j 2 + 2 0 3 ^ ; ^ ^ ) 

and 

c 2 = X g 1

2 + ( b 1 g 1 ) 2 + r ( g 1 - i ) 2 

Since policy decisions made at t ime t (even) do not affect the Fed 's 

value function W(u^ +2) at t ime t+2, the outer min imizat ion problem of 

program (22) reduces to the following problem: 

(CIO) min i ( X m t

Z + p t

Z ) + E t C ( m t + l f u t + 1 ) s.t. (C9) 

m. ,m t*'"t+i 

Necessary f i rs t order conditions for program (CIO) are given by 

( C l l ) 
d l d 2 \ m t 

( c 2 + d 2

2 ) m t + l 

" d l d 0 

- ( c 3 y + d 2 d 0 ) 

7* 

which we abbreviate as Dm = du^. Substituting for m^ and using 

equations (15) and (16) and dividing ( C l l ) by then impl ies the fol low

ing values for fg and f^: 
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(C12) 

A feedback equi l ibr ium can be calculated by taking some in i t ia l guess 

for the parameters of the equi l ibr ium feedback laws (20) and (21), then 

iterating on equations (C6), (C7), and (CI2) , unti l convergence is 

reached. In practice convergence was quite rapid from essential ly ar

bi trary start ing values, for each of the examples reported above. The 

convergence cr i ter ion was that maximal differences between successive 

approximations be no greater than 10 in absolute value. For some 

unreported simulat ions, convergence was not obtained for large values 

of r. S i m i l a r convergence problems are reported by Kydland and 

Prescott (1977) for simulat ions of a policy game in a discret ionary 

environment, suggesting that such problems are not uncommon to this 

type of model. 
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Notes 

1. See McCal lum (1985) for a survey of the l i terature on monetary 

targeting. 

2 . A s i m i l a r result i s shown in Canzoneri (1985). 

3 . See Whiteman (1983) and Watson (1985) for a discussion of the 

solution of equation (1). 

4 . The policy problems considered in this Section were f i rs t proposed 

and analyzed by Whiteman (1986), using techniques different f rom the 

ones employed here. 

5. Setting the Fed's discount factor equal to one does not affect the 

qualitative properties of the models studied below. The government's 

objective is s t i l l wel l defined i f we reinterpret as an "average cost" 

objective, as in Bertsekas (1976). Average cost objectives are con

venient for the numerical simulat ions reported in Section 6, since they 

al low estimation of the Fed's objective using sample moments. 

6. See Corol lary 3.2 of Whiteman (1986). 

7. This transformation (division of the logged monetary target by a) i s 

done purely for notational convenience. 

8. Any potential credib i l i ty problems ar is ing in a stat ic context are 

3 1 



assumed away in the models of this paper, so as to concentrate on dy

namic credib i l i ty issues. This assumption seems warranted, given that 

dynamic credib i l i ty issues were the main focus of Kydland and 

Prescot t 's (1977) or iginal cri t ique. 
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