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Individual Risk Without Aggregate Uncertainty:

A Nonstandard View

Introduction

Equilibrium analysis in large economies whose agents
face uncertainties is simplified when these uncertainties com-
pletely and rigorously disappear in the aggregate. Both Judd
(1985) and Feldman & Gilles (1985) agree that numerous papers
seeking to do so are beset by technical problems arising from the
difficulty of extending laws of large numbers to continua of
random variables.

Both Judd and Peldman & Gilles encourage the use of
nonstandard, hyperfinite probability theory in resolving these
economic modeling difficulties, but neither paper develops the
idea further. This paper illustrates how the practitioner can use
models with an infinite hyperreal number, rather than a continuum,
of agents to simplify large scale economic analysis. The survey
paper by Cutland (1983) is heavily relied on here for the machin-
ery used, and should be read in conjunction with this paper. TFor
more general background on nonstandard analysis, see the introduc-
tory text of Henle and Kleinberg (1980) and the more advanced
treatment of Keisler (1976), Hurd and Loeb (1985), and Albeverio,
et. al. (1986). Tor other applications of nonstandard analysis in

large scale economies, see Emmons and Yannellis (1984).



Section 1: A Representative Problenm.

The following problem in a model of Prescott and
Townsend (1984) is representative of what we wish to solve. Sup-
pose there are two types of agents: 1low risk agents and high risk
ones. FEach low risk agent receives a random endowment Z, which is
Bernoulli distributed with probability P(Z=ZO) = 04. Each high
risk agent receives an analogous random endowment with higher
P(Z=ZO) = 0,. The endowment pattern of low risk (or high risk)
agents ia thus specified as an independent Bernoulli process, with
probability P(Z4=Zy) = 04 (or 0,), where t ranges over the set of
all low risk (or high risk) agents. If there were a finite number
n of low risk (or high risk) agents, then the proportion of low
risk (or high risk) agents getting 72 = ZO would be a binominal
random variable with mean equal to 04 (or 02) and variance equal
to 8,(1-04)/n (or 0,(1-0,)/n). Randomness does not rigorously and
completely disappear no matter how large n is.

Prescott and Townsend want these proportions to be
nonstochastic, however, egualing 04 and 0,, respectively. To do
80, they and others have hoped that the assumption of a continuum
of agents would permit the application of an extended strong law
of large numbers forecing these proportions to degenerate to dis-
tributions concentrated on 81 and 0,5, respectively.

As discussed in the previously cited articles by Judd
and by Feldman & Gilles, there are two problems in extending laws
of large numbers to a continuum of random variables. The first

problem is that sets one would want to assign probability to may



not be measurable. In our representative problem, for some real-
izations assigning either Zo or Z; to each member of the continuum
of low risk agents (represented, say, by the interval (0,1]), the
subset of agents receiving Zy may not even be Lebesgue measurable,
let alone have measure equal to 04 if it were. In fact, Judd's
Thm. 1 implies that such realizations are contained in every Borel
set of realizations of positive measure of this process. The
second problem is that even when measurability is not an issue,
the strong law of large numbers may fail. So even when we have a
realization in which the subset of low risk agents on (0,1] re-
ceiving Z, is Lebesgue measurable, its measure may not be 04
Because Judd's Thm. 2 implies that such realizations are contained
in every Borel set of positive measure, this is also something
worth worrying about.

In discussing various ways of avoiding these problems,
both Judd and Feldman & Gilles encourage the application of non-
standard economic models utilizing an infinite hyperreal number of
agents, rather than a continuum. Neither article develops this
notion. This one does. The following section presents an ap-
plications, practitioner-oriented development of the mathematical

background necessary to develop this notion.

Section 2: Hyperreal Numbers

*
A hyperreal number system, denoted R, is an extension

of the real number line R obtained by defining and including

infinitesimal nunmbers. Infinitesimal numbers are defined %o be

numbers whose absolute value is less than all positive real num-



bers. Thus, the only real number which is also infinitesimal is
ZEero. Because the extension produces an ordered field, sums,
products and quotients are all defined and obey the usual laws of
arithmetic and ordering relationships.

For example, let "dx" denote an infinitesimal number,
and suppose dx > O. Then, 1/dx is also a hyperreal number. By
definition, for all real, positive €, dx < €. Dividing both sides
by (positive) dx and ¢ yields 1/dx > 1/e, for all positive €, no
matter how small. Thus, the hyperreal number 1/dx is greater than
all real numbers, and is termed infinite, albeit still smaller
than (1/dx) + 1 or than 2/dx, which are also infinite. Note that
in making this argument, I've assumed that the order properties of
quotients and the relations symbolized by "<" and ">" extend to
the whole hyperreal number system. This is valid, for the rela-
tions symbolized by "<" and ">" and all other set theoretic real
entities have extended counterparts on the hyperreals.

For another example, note that h = r + dx is hyperreal,
for any real number r. It turns out that any finite hyperreal has
a unigue representation as r plus an infinitesimal, with r being
interpreted as the real number closest to it, or the real part of
the finite hyperreal, denoted :Q, There is thus a haze of hyper-
real numbers around each real number r, generated by taking r and
adding all positive and negative infinitesimals to it, termed the
monad of r. A hyperreal haze also surrounds each infinite hyper-
real, positive or negative, as well. When two hyperreal numbers
differ by an infinitesimal, like r and r + dx do, we say that they

are infinitely close.




Much of the usefulness of nonstandard analysis lies in

the Transfer Principle, which provides a mechanism for transfer-

ring statements true in a real number system to statements true in
a hyperreal number system, and vice-versa. Roughly speaking, the
idea is to first write the statement known to be true in one

number system as a bounded guantifier sentence in the first order

predicate calculus, and then to rewrite it in the other number
system, replacing symbols by their counterparts in the other
systen.

Somewhat more precisely, a first order formula is made

up of symbols denoting variables, constants, relatives and func-
tions, the usual logical connectives, parentheses and commas, and
the quantifier symbols ¥ and 3 . A formula is said to be bounded
when each quantifier restricts its quantified variable to lie in a
specified set, and is said to be a sentence when there are no free
(i.e., not quantified) variables within it. Sentences may contain

constants, though. For example, the bounded quantifier sentence
(1) (¥ xeR) (¥ x5¢R) ((x1>08x,>08x<xp) => 1/x4>1/x5)

composed of variables x, and x,, the constant 0, the relations ¢,
< and > and the logical connectives & and =>, is true. By appli-
cation of the Transfer Principle (stated more compactly, "By

transfer"), the bounded quantifier sentence

(1) (¥ x1*e*R)(V xz*é*B)((x1*>0&x2*>0&x1*<x2)=>1fx1*>1/x2)



is also true, where the starred symbols denote the hyperreal
counterparts. Because they are extensions, it is normal practice
to suppress the starred notation on the symbols for the extended
relations, functions, etc. Note in particular that any real
constant r, like zero, has *r = r. (1') justifies the operations
previously used to "prove" that 1/dx is an infinite positive
hyperreal when dx is a positive infinitesimal, by interpreting x,
and x, to be the hyperreal numbers dx and £ (the latter is also
real), respectively.

However, one must be careful in applying the Transfer
Principle to transfer "everything." Tor example, the Archimedean
property of the real numbers, which states that any particular

real number is smaller than some real integer, is expressed as:
(2) (¥x,6R) Bx4eN)x, < x4

Where N denotes the real integers. 1In transferring this sentence
to its hyperreal counterpart, both R and N must be replaced by

* s
their respective hyperreal counterparts R and N. The resulting

*
Archimedean property of the hyperreals is that any particular
hyperreal number is smaller than some hyperreal integer. Because
there exist infinite hyperreal numbers (e.g., 1/dx as proven

earlier), for each one there must exist a larger infinite inte-

¥*
ger. If one did not replace N by N in transferring the state-
ment, one would get the statement that any particular hyperreal
number x, is smaller than some real integer x,, which is obviously

false (let x, = 1/dx, for example).



Hyperreal sets which are produced by transfer are said
to be internal. So *N is internal, but N C *N ig not internal.
By transfer, any internal subset of *H which is bounded above has
a least upper bound. N is bounded above by any infinite integer,
but has no least upper bound, and hence isn't internal, i.e., it
is external. It turns out that N is not an element of any *A,
where A is a real set of sets, so it can't be produced by trans-
fer.

Becaugse there exists finite initial segments {1,2,3,
«ss,yn}, of N, by transfer there must also exist internal initial
segments of ‘*N, like {1,2,3, +4v, M}, where M is a finite or
infinite integer. Bets which can be put into one-to-one corre-
spondence with these segments are called *finita, or hyperfinite

sets of cardinality M. In our representative problem, we'll

assume that the set of agents is a hyperfinite set, rather than a
continuum, and use it to define a hyperfinite measure space, in

section 4.



Section 3: Nonstandard Probability Theory

One might guess that hyperreal, internal og-additive
measure spaces could be easily produced by a straightforward
application of the Transfer Principle to the defining axioms of
real measure spaces. But this turns out to be wrong. Suppose
that X is a real measurable space with a ¢g-field F and o-additive
(i.e., countably additive) measure y on F. Application of the
Transfer Principle yields a hyperreal measurable space *X with an
internal *c-field *F and a *c-additive internal measure *u. This
means that a union of measurable sets indexed over all *N, which
includes the infinite integers, is in *F and that *u is additive
over disjoint unions of sets (in *F) indexed over all *N. But it
turns out that countable unions of measurable sets (i.e., those

ke
indexed over just N) won't be in ¥, i.e., they aren't internal

unions, unless they can also be represented as finite unions. So

*
F is not normally a o-field

The concept of Loeb measure gets around this problem by
starting in the hyperreals, with an arbitrary hyperreal, internal
measurable space X, an internal algebra (not o-field) A of inter-
nal subsets of X, and an internal, finitely additive, nonnegative,
hyperreal-valued measure v: A » *R+. One can make an extended
real-valued measure p on A just by "rounding off" v to the real
part of its hyperreal value (when it is finite), denoted Dv, and
by defining u to be » on sets where v has an infinite hyperreal

value.



In this notation, with a minor extension by Hensen
(1979) Loeb showed that the Caratheodory Extension Theorem (see

Ash (1972, p. 19) could be utilized to help prove:

Thm. 1 (Loeb (1975)) Loeb Measure

The extended real-valued function y has a unique, o-
additive extension p to the smallest (external) uv-algebra F con-
taining A. For each S ¢ F, the value of this extension is given

by u(S) = inf p(B). When p(X) is finite, it is also true that

Be A

BDS

u(s) = sup u(B)
Be A
BCS

and there is a set C e A with ﬁ((s-c) v (c-8)) = 0.

Analogous to the construction of Lebesgue measure, one takes the
completion of the o-field with respect to u, producing the Loeb

measurable sets F;, and extends u to F;, denoted y;, the Loeb

measure of the Loeb space (X,FL).

Via Loeb's result, we now have a o-additive, extended
real valued measure vy, on a g-field F, extending .u and A, re-
spectively. Further, one can approximate any measurable set S in
F by a set in the smaller algebra A, whose symmetric difference
with S has Loeb measure equal to zero.

Integration on Loeb spaces is facilitated by 1lifting
theorems. A major result of Loeb stated, in Cutland (p. 552), is

rewritten below:
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Thm. 2: Lifting Theorem

Let f be an extended, real valued function on X. Then,
f is Loeb measurable if and only if there exists an internal, A-
measurable function, or random variable, ¥: X » *R (i.e., all its
upper and lower contour sets are in the algebra A), such that
"F(x) = £(x) for v, almost every x & X. F is called a 1ifting of
f. Further, if both f and F are finitely bounded, [fdv, = ' Fav,

%
where " [" denotes *integration, the hyperreal counterpart of

standard integration.
In the representative problem, which we solve in the
#
next section, " f” is just summation over a hyperfinite set, which

is an elementary calculation, illustrating the utility of Thm. 2.



=i =

Section 4: Application of Loeb Measure to the Problem

To apply the results of sec. 3 to our problem, assume
that there is an infinite integer M of agents, so the hyperfinite
set of agents can be represented by {1,2, ...,M. Following
Prescott and Townsend, assume that a real fraction Ag = N/L of
them are the L low risk agents, while a real fraction Ao = (1-11)
= N/H of them are the other H high risk agents. Bach of the L (or
H) low risk (or high risk) agents receives endowments of 4y or Zy,
identically and *independentlyl/ distributed among them with real
p(2=2,) = 84 (or 85).

A suitable internal measure space of realizations for
either of these two internal Bernoulli endowment processes is
easily constructed. For the L low risk agents, the internal
measurable space of realizations is the set X of all internal
sequences of length L composed of zeroes and ones, where a one in
the ith place, i.e., x; = 1, means the i agent was endowed with Zo
rather than Z,. The infinite cardinality of X thus equals ok,
The algebra A is the class of internal subsets of X, denoted
*P(X), the hyperreal counterpart of the power set of X. The
hyperreal-valued probability weighing function (see Cutland, Sec.
%3.3) on X, denoted Av(x), is given by elementary probability

theory:

l/By trgnsfer, a set of (hyperreal-valued) random vari-
ables (F;(x)) is _independent if the joint cumulative distribution
function of every hyperfinite internal subset of them is fhe
product of their respective marginal distribution functions on R.




L
X. L= Z X
(3) av(x) =6 i=1 1(1-91) i=

Then, for any set B e A, the internal measure is
(4) v(B) = § av(x)
xe B

In fact, because X is hyperfinite, any internal measure
on A has a probability weighing function Av (Cutland, p. 556).

The fraction of Zo endowments is then an internal,
finitely bounded, nonnegative, hyperreal-valued function

* -
F: X » [0,1] given by the sample average:
L
(5) F(x) = ] x/L
i=1

It turns out that any internal function, such as (5), is
A-measurable on a hyperfinite space (Cutland, p. 556-7), and thus
is a hyperreal-valued random variable on X.

To aid in real world applications, we may demand that
both probabilities and random variables be real-valued. To do so,
by Thm. 1 we round off v in (4) to its real part and extend to
produce the Loeb measure vy associated with (3) and (4). We also
round off F in (5) to its real part, producing the real, countable

limit sample average
(5') f(x) = F(x)

By the Lifting Thm. 2, f in (5') is a Loeb measurable
random variable, and the expected value of it, taken with respect

to the Loeb measure vy is calculated as:
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(6) E(f)

i

[fdv, = O*deu - OE F(x)av (x)
X xe X

f L
L . L- § x.
¥ 3 (xi/L)B1i=1x1(1-61) i§1x1
xeX i=1

0

"(/m00,) = o,
where the next to last equality follows from the usual binomial
distribution calculation. In fact, the answer would have been the
same for any hyperreal 8, infinitely close to our hypothesized
real Oqe

As we have just seen, real integration on hyperfinite
Loeb spaces is merely hyperfinite summation rounded off to its
real part. But without finite boundedness of ¥, the sum may be an
infinite hyperreal and thus will have no real part. It turns out
that integration on Loeb spaces still follows the same calculation
whenever ) |F(x)|av(x) is infinitesimal for every infinite

xeX

|F(x) [>N

integer N (see Cutland, p. 354). In this case, one says that F is

S-integrable, in which case the hyperreal integral of ¥, on the

set where F is infinite, is infinitesimal, so it won't affect the
real part of the outcome.

The expected proportion of Z,-endowed, low risk agents
is thus 8,. What about the variance? The same technique leads

to:



a4«

(7) var (£) = [(£-B(£))2vy, = 1 (F(x)-8,)28v(x)
X xe X

8, (1-64)/L = 0

where the last eguality in the above binomial calculation holds
because 81 is finite (not because it is real) and L is infinite.
So the proportion f appears to degenerate to a real constant 8,,
solving our problem. In fact, this can be direectly proven using a

hyperfinite Chebyshev inequality, proven below.

Thm. 3: Hyperfinite Chebyshev Inequality

*
Let P+ X > R be an internal, finitely bounded, hyper-
real-valued random variable on the internal, hyperfinite measure
space X, eqguipped with the algebra A of all its internal subsets

and the internal measure v: A » *R+. Then,
o) v{x: |F(x)-E(F)|>k/var (7)) < 1[k2,
where k is any positive hyperreal, and the expectation and vari-

*
ance are defined by integration.

*
Proof: Let G: X > R’ be internal and finitely bounded. For any

positive hyperreal c,

il

(8) *feav = § clxav(x) > §  G(x)av(x)re]  av(x)
X xeX xe X xe X
a(x)se Glx)re
evix: G(x)>c},

It

where the last set is measurable because internal functions G are

always A-measurable on hyperfinite spaces, as noted earlier. ILet



-15 =

G(x) = (F(x)-E(F))2 for some finitely bounded internal ¥, and let
¢ = k2 B(G) for arbitrary positive hyperreal k. Substituting into
(8), rearranging, and taking the hyperreal counterpart of the
square root yields (7').

0f course, Thm. 3 is valid for arbitrary internal mea-
sure spaces, rather than just hyperfinite ones, Jjust by replacing
hyperfinite sums with *f and requiring that F be A-measurable.
But we would rarely need to use the more general theorem, for a
large clags of standard measure spaces can be constructed from
Loeb spaces associated with hyperfinite spaces. For example,
Lebesgue measure on [0,1] can be constructed from the hyperfinite
grid X = {0, At, 2At, 3At, ...,{1/At)At = 1}, where At is a posi-
tive infinitesimal which divides 1, yielding some positive infin-
ite integer. A is the usual algebra of internal subsets of X, and
av(x) = At, so v in (4) is just the counting measure. It turns
out (Cutland, p. %58) that a set ¢ [0,1] is Lebesgue measurable
if and only if {x: exx-:C} is a Loeb measurable subset of X, and the
Lebesgue measure of C is the Loeb measure V1, of that set. More
generally, Anderson (1982) has shown that arbitrary Radon measures
on Hausdorff spaces have an analogous hyperfinite Loeb representa-
tion (also see Cutland, sec. 4.2).

In the representative problem, let k = wvar (F)/m =
0,(1-6,)/mL, where m is any positive finite integer. Define

D, = {x: |F(x)-8,[>1/m}. Then, Thm. 3 implies that

(9) v(Dy,) < 81(1-81)m2/L.
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Because the ILoeb space asgociated with X is countably
o0

additive, D = U Dm is Loeb measurable. D is the set of realiza-
m=1
tions on which F(x) and 0, differ in absolute value by no more

than some real number. But using subadditivity and (9), compute:
» o ©

(10) v (D) < § vy (D) < 5: °a1(1-e1)m2/L = ; 0 = 0.
m=1 m=1 m=1

Therefore, °F(x) = f(x) = 8y a.e. (uL).

We have just established a strong law of large numbers
for this hyperfinite Bernoulli case. Furthermore, a nonstandard
central limit theorem of Anderson (1976, p. 27) implies that for
any specified infinite integer I < L.

-1 I
(11) D(a) = v{x: /8,(1-0,)/T (12;1(::1/1)—91)“}
ig infinitely close to the hyperreal oounterpart *Z(a) of the
comulative standard normal distribution Z(a). So °D(u) = Z(a) for
any real a. In other words, infinite, normalized partial sample
averages of this process are essentially Gaussian, a result we
could call the Hyperfinite Bernoulli Theorem.

Finally, note that the same derivation establishes that
the proportion of high risk agents getting Z = 7, degenerates to
85+ So, our problem is solved. Or is it? Remember that we chose
to work with an infinite integer M of agents. Suppose that one
desired to model an economy with a countable infinity of both low
risk and high risk agents, so that all pieces of the model would
be real. A countably infinite subset of our hyperfinite set of

agents is not internal, nor is a subset of realizations (in X)
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which agree on a countably infinite number of components an inter-
nal subset of X, i.e., it is not in the algebra A. The full power
of Loeb measure can be brought to bear on this problem, for such a
subset of X is in the Loeb o-field containing A.

S0 suppose we only examine what happens to the Loeb

meagsurable countable subset of low risk agents N = {1,2,3,...}.

n
Define the finite proportion F (x) = } xi/n.
i=1
Define Dy(m) = {x: [F (x)-E(F)|>1/m}. DNote that lim inf
Dn(m) = U NDd,(m) ={x: [lim Fn(x)-E(F)|>1/m}. As & count-
n={ Jj=n ]

able union of countable intersections, it is Loeb measurable. As

above, the set of realigations on which lim ¥ (x) differs from

n
nreo o
E(F) by more than some real number is D = U lim inf Dn(m).
m=1
Relentlessly using subadditivity, compute:
=] o0 =] o o
(12) vw(D)< § Yv(ND(m)< ¥ ¥ inf v (D.(m))
L I - LS | I L'
n=1 n=1 Jj=n m=1 n=1 j2n

But inf v (D, (m)) = inf °w(D,(m)) < inf m291(1-6?)/j -0 wia  he
jon J j2n Jjzn

Chebyshev inequality. Therefore, we obtain,
Q.. _ o _
lim Fﬂ(x) = B(F) 8, a.e. (vL).
n+w
Summarizing, on the Loeb space associated with X, we
have shown that °F(x) = lim Fn(x) = °R(F) =0

e
have thus produced a countably additive measure (i.e., “L) on a

: a.e. (uL). We
measure space X of realizations, with a countably additive o-
algebra (i.e., the Loeb algebra derived from the internal subsets
of X), on which sample fractions are nonstochastic almost every-

where.
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