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Doan, Litterman, and Sims (1984, hereafter DLS) have

described a method for estimating Bayesian vector autoregressive

(BVAR) forecasting models. The method has been successfully

applied to the U.S. macroeconomic dataset, which is relatively

long and stable. Despite the brevity and volatility of the post-

1976 Chilean macroeconomic dataset, a straightforward application

of the DLS method to this dataset also appears to satisfy at least

one criterion of relative forecasting accuracy suggested in DLS.

However, the Chilean BVAR's forecast errors are still large in

absolute terms. An improved dataset or modifications to the basic

DLS method may be needed to significantly improve the model's

forecasting performance.

The DLS Method Has Produced Successful Forecasting Models

for U.S. Data

The DLS method mainly consists of procedures for choos-

ing a Bayesian prior distribution for the coefficients of a vector

autoregression. A vector autoregression is a multivariate time

series model where an n x 1 vector of time-indexed elements is

regressed on its own lagged values. Typically, the value of the

vector at time t is regressed on its values at t - 1 through t -

k. This means that the model contains n equations, each with a

constant, a disturbance term, and k lags of each variable on the

right side. DLS describe how to choose a prior probability dis-

tribution for the disturbance term variance and the nk + 1 coeffi-

cients of each equation.

To simplify the task of choosing the nk + 1 means and

(nk+1) x (nk+1) covariances of each equation's coefficients, DLS
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first propose that the prior distributions be chosen from a par-

ticular family of distributions. Many aspects of the prior dis-

tribution are common to all members of the family. For example,

in each member of the DLS family, the prior means of the coeffi-

cients are set to values associated with a random walk. Also, the

prior variance of the coefficient on the kth lag of a variable

declines as k increases, indicating increasing confidence that the

coefficient should be close to its prior mean.

The members of the DLS family do differ in a few dimen-

sions. For example, members could differ by the degree of confi-

dence they express in the random walk prior means of the coeffi-

cients, in the zero prior mean of the constant term, or in the

importance of time variation in the coefficients.

Each dimension by which the members differ is indexed by

a so-called hyperparameter. By specifying a value for each hyper-

parameter, the model builder would select a particular prior from

the DLS family. The number of hyperparameters is typically small

(in DLS, 8), and each has an economic or statistical interpreta-

tion, and usually a numerical scale as well, that does not vary

with the model to which it is applied. This means that forecast-

ers probably can develop beliefs about the best values of these

hyperparameters more readily than they can develop beliefs di-

rectly about the numerous means and covariances of the prior

distribution of the coefficients of a particular model.

In a fully Bayesian implementation of the DLS method,

the forecaster would also specify a prior distribution over the

hyperparameters. In principle, at least, it would then be possi-
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ble to construct the prior distribution of the model's coeffi-

cients as a mixture of the distributions associated with each

individual hyperparameter setting, where the weights used to form

the mixture are taken from the prior over the hyperparameters.

Conventional Bayesian procedures--integration and scaling of the

likelihood times the prior--would yield a posterior distribution

for the coefficients. In general, this involves intractable

integrals and thus cannot be done. An obvious exception occurs

when the forecaster's prior over the hyperparameters is degener-

ate, putting unit mass on a single member of the DLS family. In

this case the Kalman filter will easily compute the posterior

distribution of the coefficients.

DLS do not expect, however, that forecasters should be

able to compute the difficult integrals of the general case or

identify a single member of the DLS family of distributions as

their own prior beliefs about their model's coefficients. DLS

propose a tractable alternative that, under certain assumptions,

should approximate the fully Bayesian procedure just described.

For each hyperparameter setting, the forecaster computes how well

a model with those hyperparameters would have forecasted in the

past. The criterion DLS use to evaluate each model's simulated

forecasting performance can be interpreted as a likelihood func-

tion relating the data and the hyperparameters. DLS recommend

using the hyperparameter setting that maximizes this likelihood

function.

Since the data are used to pick the prior, this is

clearly not a strict Bayesian procedure. However, DLS note that



if (a) the forecaster's priors over the hyperparameters are nearly

flat, (b) the DLS likelihood statistic is high within a region R

and low elsewhere, and (c) the important features of the estimated

models are not too sensitive to variations of the hyperparameters

within R, then picking the hyperparameters that maximize the DLS

likelihood gives a model whose important features are approxi-

mately the same as the model implied by the fully Bayesian proce-

dure. DLS then argue that condition (a) is plausible and that

conditions (b) and (c) seem to hold, at least for the U.S. macro-

economic dataset they examine. This rationale justifies the use

of a non-Bayesian procedure to estimate a "Bayesian" vector auto-

regression.

Whatever its rationale, the DLS method for estimating

BVARs has produced models that forecast U.S. economic data reason-

ably accurately. In the simulated out-of-sample forecasts, DLS

(p. 22) observed "an average of about 2 percent improvement in the

one-step-ahead forecast errors in going from (a system of univari-

ate autoregressions for each variable) to the final (BVAR)." They

claim (p. 24) that,

"Despite the small absolute gain in forecast accuracy, it

is significant that we have documented a consistent gain

from the use of a formally explicit multivariate method

in a system of this size. This has not been done before,

to our knowledge. The difference in accuracy that we

find between multivariate and univariate methods is

substantial relative to differences in forecast accuracy

ordinarily turned up in comparisons across methods, even
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though it is not large relative to total forecast er-

ror. Moreover, if we think of a decomposition of move-

ments in the data into signal and noise, with noise being

the dominant component, then a 2 percent increase in

forecast accuracy must represent a much larger percentage

increase in the amount of signal that is being captured."

Litterman (1986) and McNees (1986) present evidence that the

actual forecasts generated in the early 1980s by a small BVAR of

the U.S. macroeconomy were also at least as accurate, for real

variables like real GNP and unemployment, as the forecasts of the

major U.S. economic consulting firms.

Chilean Macroeconomic Data Pose Severe Difficulties

to Any Forecasting Method

Compared to the U.S. macroeconomic data series that DLS

used, the Chilean macroeconomic data series are short and vola-

tile. Current practice among analysts of the Chilean economy, I

am told, is to regard all data available for periods before 1976

as unreliable, incompatible with current data, or both. The

validity of this practice needs to be examined, but I have adopted

it here. As a result, I have about 144 monthly observations,

enough to encompass only about 3 or 4 normal business cycles.

During this short period, however, business cycles were

not, at least by U.S. standards, normal. The period began at the

tail end of a rapid disinflation, and growth rates of the season-

ally adjusted M1 money stock (M1NPS) and the wholesale price level

(WPI) continued to drift down from the 8-12 percent range in 1976

i
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to slightly negative rates by 1981 (Figures 2c and 3c). Domestic

interest rates (DIR) began the period at levels far above the

highest values in the DLS dataset, fell precipitously for a year,

but remained high (for example, relative to percentage changes in

the WPI) throughout the period (Figure 6a; nominal rates are

shown). Policy regarding the foreign exchange value of the

Chilean peso (XCH) shifted twice, from floating to fixed in 1979

and back to floating in 1982 (Figure 4a). The first exchange rate

shift was roughly contemporaneous with a peak in the price of a

major export good, copper (PCOB, see Figure 8a), and a liberaliza-

tion of capital controls. It was followed by surges in Chilean

capital inflows (KINF; Figure 5a) and international nominal rates

of interest (LIBOR; Figure 7a). The second exchange rate shift

was preceded by sharp declines in the (copper) terms of trade

(Figure 8a), capital inflows (Figure 5a), and seasonally adjusted

industrial production (IPINSS; Figure la). It was followed by a

burst of inflation (Figure 3c), a spike in domestic interest rates

(Figure 6a), and partial rebounds in the (copper) terms of trade

(Figure 8a) and industrial production (Figure la). Variables like

these also vary in the United States, but generally to a much

milder degree and in a dataset whose greater length allows more

precise measurement of any associated changes in the relationships

among variables.

The brevity of the Chilean dataset, the volatility of

the Chilean data series, and the possibility that policy changes

significantly affected the relationships among Chilean variables

all pose difficulties for any forecasting methodology. Successful
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forecasting models may require longer datasets, the imposition of

many coefficient restrictions derived from structural econometric

models of the recent Chilean experience, or more sophisticated

modeling of time variation in both the coefficients and the dis-

turbance term distributions. In this paper, I will not pursue

those possible avenues of improvement. Instead I will show that

DLS's BVAR technique, applied to the existing Chilean dataset with

no significant modifications to take account of the data's vola-

tility or the effects of policy shifts, can still at least match

the forecasting performance of univariate time series models while

capturing some relationships among variables.

The DLS BVAR Method at Least Matches a System

of Univariate Equations

I have applied a slightly modified version of the DLS

BVAR methodology to the January 1976 through December 1987 monthly

values of the eight data series discussed in the previous sec-

tion. The method yields a quasi-univariate system of equations.

That is, under apparently optimal hyperparameter settings, the

estimated forecasting equations forecast about as accurately as

univariate equations and allow only moderately more interaction

among the variables. Experimentation with other hyperparameter

settings suggests there may be a tradeoff between optimizing the

model to predict industrial production and optimizing it to pre-

dict other variables, such as inflation.

The Chilean BVAR was originally specified with six

endogenous and two exogenous variables. The six original endo-

genous variables were IPINSS (seasonally adjusted industrial
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production), MINPS (seasonally adjusted M1 money), WPI (wholesale

price index), XCH (peso-dollar exchange rate), KINF (capital

inflows), and DIR (domestic interest rates). The two original

exogenous variables were LIBOR (international interest rates,

represented by the London interbank offer rate) and PCOB (the

price of copper). The original model had six equations for the

endogenous variables, each with a constant term and six lags of

each of the endogenous and exogenous variables on the right

side. The two purely exogenous variables were represented by

unrestricted univariate autoregressions, with 2 lags for LIBOR and

4 lags for PCOB.

I also experimented with models in which capital inflows

were treated as exogenous. The model reported here is somewhat

intermediate. Technically it treats capital inflows as endogenous

and has six multivariate equations (plus univariate equations for

LIBOR and PCOB). However, the prior distribution of the coeffi-

cients in the equation for capital inflows causes most of the

coefficients on other variables in that equation to be nearly

zero. Except for contemporaneous correlations between its distur-

bance term and other disturbance terms, capital inflows are nearly

exogenous.

The model presented here differs from the initial model

by allowing for varying delays in the release of data for its

variables. Data on the money supply, the wholesale price index,

the exchange rate, domestic and foreign interest rates, and the

price of copper in month t are assumed to all first be available

in month t + k, k 1. Data on industrial production and capital



-9-

inflows in month t are assumed to be released two months later

(t+k+2). Accordingly, the equations for IPINSS and KINF are

augmented by terms for the contemporaneous and lead one values of

the other variables.

The prior means of the coefficients of the six endo-

genous equations are set according to the continuous-time random

walk prior. That is, the prior means are set to conform to a

model in which each variable evolves as a continuous function of

time such that at each instant its expected value at any future

date equals its current value. The variables are observed only as

discrete monthly averages, however. Discrete time averages of

continuous random walks are generated by autoregressive processes

with an infinite number of lags, where the coefficient on the kth

lag is given by

(k-l)

where a = /3 - 2 [see Working (1960) or Christiano and Eichenbaum

(1987)]. In each equation of the Chilean BVAR, the coefficients

on the six lags of the dependent variable are given values accord-

ing to this formula, with k = 1, 2, 3, 4, 5, 6. All other coeffi-

cients have a prior mean of zero.

The prior variances of the coefficients in the Chilean

BVAR are governed by ten hyperparameters--the eight discussed in

DLS and two more subsequently introduced by Sims. Five of these

hyperparameters affect the variances of each coefficient individu-

ally. Three--including the two new ones--affect the variances of

linear combinations of coefficients. Two control the nature of

the time variation in the coefficients.
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Before allowing for restrictions on linear combinations

of coefficients, the prior variances of the model's coefficients

have the following form:

1. For the variance of the kth lag of the ith variable in the ith

equation,

i TITE x OWN
var(ai,k k x exp(WTxWEIGHT(i,i))

2. For the variance of the kth lag of the jth variable in the ith

equation (i~j,k O),

TITE x CROSS x .
var(a ) =

jk Ik x exp(WTxWEIGHT(i,j)) x o.

J

3. For the variance of the coefficient on the contemporaneous

value of the jth variable in the ith equation (itj; i=IPINSS

or i=KINF),

2
2 x TITE x CROSS x a.

var(a ) = .

j,k exp(WTxWEIGHT(i,j)) x 0.
J

4. For the variance of the constant term in the ith equation,

var(c ) = TITE x CON x ..

In these expressions, a. is the variance of the disturbance term
1

in equation i. The a. are treated as though they are known but

are in fact estimated as 0.9 times the standard error of the

residual in a regression of variable i on six lags of itself. The

terms WEIGHT(i,j) come from the 6 x 8 matrix
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0.0 1.0 1.0 -1.0 1.0 1.0 1.0 1.0

1.0 0.0 0.5 0.5 0.5 1.0 1.0 1.0

1.0 0.5 0.0 0.5 1.0 1.0 1.0 1.0

2.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0

1.OxKW 1.OxKW 1.OxKW 1.OxKW O.OxKW 1.OxKW 1.OxKW 1.OxKW

2.0 2.0 2.0 2.0 2.0 1.0 2.0 2.0

Along with the hyperparameter WT, this matrix allows selective

alteration of the variances of a given variable's coefficients in

a given equation.

I exploited this possibility by experimenting (in the

initial model only) with various values of KW, which controls the

influence other variables have on capital inflows. Treating KW

as, in effect, an eleventh hyperparameter, I selected a value of

KW = 8, which makes capital inflows nearly a univariate process.

Except for the KW factor, the rest of the WEIGHT matrix

is patterned after the one used by DLS. Rows 1 and 5, for IPINSS

and KINF, have the basic DLS pattern of zeroes on own lags and

ones on other variables. Rows 4 and 6, for XCH and DIR, have ones

on own lags and twos on other variables, the pattern DLS suggest

for variables especially likely to follow random walks. Rows 2

and 3, for MINPS and WPI, have a modified form of the 0-1 pat-

tern. Because they are likely to be sensitive to each other, to

the exchange rate and, in the case of MINPS, to KINF, these other

variables are given the intermediate downweighting factor 0.5 in

rows 2 and 3.

The terms OWN, CROSS, and CON are hyperparameters gov-

erning the size of the variances of the coefficients of, respec-

tively, own lags (lags of the dependent variable), cross lags

(lags of variables other than the dependent variable), and the
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constant terms. Finally, the hyperparameter TITE is used to scale

all prior variances up or down simultaneously.

Three hyperparameters govern the tightness with which

three linear restrictions are imposed on the coefficients. SUM is

used to control the tightness of a restriction that the sums of

the coefficients on own lags should be one and the sums of the

coefficients on cross lags should be zero. BEGWT controls the

tightness of another restriction that even if the SUM restriction

is violated, the coefficients on all variables should collectively

imply that the best forecast of a variable is given by the random

walk prior. NOMWT controls the tightness of a long-run superneu-

trality constraint. This constraint allows the sums of individual

nominal variables to deviate from one in their own equations and

from zero in other equations, but requires that the sum of all

nominal variable coefficients be approximately one in nominal

variable equations and approximately zero in other equations.

(Nominal here means variables measured in units of domestic cur-

rency and hence likely to inflate at about the same rate in the

long run. MINPS and WPI were treated as nominal here. XCH was

not, since it partly depends on inflation outside Chile and be-

cause experiments suggested little gain from treating it as nomi-

nal.)

The eight hyperparameters discussed so far determine the

prior mean, 80 , and prior variance-covariance matrix, 0 Two

more hyperparameters govern how the posterior mean and variance

evolve as the model is estimated by applying the Kalman filter to

the observations one by one. The hypothesized law of motion of

the coefficients, which must be supplied to the Kalman filter, is

L__
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(Bt-B0 ) = DECAY x (tt-) + t'

where ut is taken to be normally distributed with mean zero and

variance-covariance matrix TVAR x 0. DECAY and TVAR are the two

hyperparameters governing, respectively, the rate, at which the

coefficients decay toward their prior mean and the extent to which

they vary around their expected path.

I selected values for the ten hyperparameters by at-

tempting to maximize the likelihood statistic developed by DLS.

For the ith endogenous variable, the likelihood statistic for any

given hyperparameter setting is computed as a weighted average of

variable i's one-step-ahead forecast errors when the model is

estimated with those hyperparameters. The one-step-ahead forecast

errors are computed recursively, with each forecast based on

coefficients estimated only through the data that would have been

available when the forecast was made. Forecasts of exogenous

variables, which are needed to forecast the endogenous variables,

are computed in the same recursive fashion, using their univariate

equations. The weights on the individual forecast errors in the

average are given by the forecast's conditional variance (condi-

tional on the data and estimated probability distribution of the

coefficients at the time the forecast was made) divided into the

geometric mean of all conditional forecast variances for variable

i. The overall likelihood statistic for the model is ordinarily

the sum of the likelihoods for each endogenous variable, but I

also experimented with maximizing the likelihoods of individual

equations (see below).
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In attempting to find the hyperparameter setting with

the highest likelihood, I searched over hundreds of possibili-

ties. Computing the likelihood for a given hyperparameter setting

takes about 10 seconds on an Amdahl dual 580 mainframe computer

system, and a large-scale search on a personal computer would take

days. Even on the mainframe, it is not practical to thoroughly

search all interesting hyperparameter settings. I chose a method

called axial search, which searches over one hyperparameter at a

time while keeping the others fixed at their best (up till then)

values. With about ten values for each hyperparameter and ten

hyperparameters, each axial search iteration covered about 100

settings.

The success of axial search depends on the shape of the

likelihood function and the order in which the hyperparameters are

searched. If the likelihood is symmetric (around lines through

its peak and parallel to the axes) as illustrated in Figure 20a,

then axial search will probably find a nearly maximizing setting

for the hyperparameters no matter in what order they are

searched. However, if the likelihood has the asymmetric shape of

Figure 20b, then results of axial search may depend on the order

in which the hyperparameters are searched, and some orders may not

find settings that are close to optimal. Even repeating the axial

search from the best point of a previous axial search may not get

around this problem if, for example, the likelihood is asymmetric

and has multiple local peaks. To lessen the possibility of such a

result, I sometimes varied the starting values and search order of

the hyperparameters.
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For the model I have described, with KW = 8 implying a

very nearly univariate equation for endogenous KINF and exogenous

LIBOR and PCOB having strictly univariate equations, the highest

likelihood value I found in my initial hyperparameter search is

associated with estimated equations for the other five endogenous

variables that are also not far different from univariate. The

chosen hyperparameters, shown in Table 2, are not much different

from those typically found in applications of the DLS method to

U.S. data, although the TITE*CROSS product of 0.0001 implies a

relatively high degree of confidence that the coefficients of

variable j in equation i (isj) are zero. However, as also shown

in Table 2, the BVAR model's root mean squared forecasting errors

1, 6, and 12 months ahead during 1981-87 are generally similar to,

and for IPINSS worse than, those of the system of univariate

equations shown in Table 1. The similarity of the univariate and

BVAR models is also evident in the histories of their forecast

errors, shown in the upper panels of Figures 9-14.

In addition, a decomposition of the sources of forecast

error indicates that the BVAR model attributes a very high per-

centage of the variance of each variable's forecast error to the

variable itself (that is, to its own disturbance term). For

forecasts of MINPS, WPI, and KINF 1-6 months ahead, nearly all of

the variance of the forecast errors is attributed to the vari-

able's own disturbance term. This is somewhat less true of

IPINSS, XCH, and DIR. The slightly lower degree of autonomy

displayed by these variables apparently reflects contemporaneous

correlation between their disturbance terms and the disturbance
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terms of the other variables, for the univariate system shows

roughly the same degree of autonomous variation in these vari-

ables. After one year, some of the variance decompositions show

stronger cross-variable effects, but these figures are subject to

wide confidence bands and thus may not be significant. [See

Runkle (1987) for a discussion of this point. See Doan and

Litterman (1986, p. 19-4) for a procedure for computing confidence

bands for BVARs.] Though not shown in the tables, estimated

coefficients on variables other than the dependent variable or

constant term are also small. Similarly, the response of variable

j to a surprise movement in variable i (the impulse response of j

to i) is generally small.

Despite the similarity of the BVAR and univariate mod-

els, the likelihood statistic favors the BVAR. The discrepancy

between the likelihood statistic, which favors the BVAR, and the

root mean squared errors, which show mixed results, may be due to

several factors. One obvious reason is that the system likeli-

hood, as the sum of the individual equation likelihoods, balances

the BVAR's inferior performance in forecasting IPINSS against its

superior performance in forecasting the other five endogenous

variables. Another possible reason is that the equation likeli-

hood, unlike the root mean squared error, does not necessarily

give equal weight to two errors of the same magnitude. An error

in a period for which the conditional variance of the forecast

error was high will depress the likelihood less than an error of

the same size occurring when the conditional forecast error vari-

ance was low.
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Some of the forecast error histories in the upper panels

of Figures 9-14 also indicate some possible advantages for the

BVAR. In particular, the univariate model's forecast errors have

on average been more biased than the BVAR's errors in recent

years, as shown by the greater tendency of running totals of

univariate model errors to drift up or down since about 1984.

Changing the likelihood criterion by omitting the like-

lihood of one or more endogenous variables can lead to somewhat

different results. I experimented with maximizing just the like-

lihood of WPI and just the likelihood of IPINSS. In the former

case, shown in Table 3, the overall system likelihood is actually

higher than in Table 2, where the hyperparameters were chosen in

an attempt to maximize the system likelihood. The axial search

procedure for Table 2 obviously failed to maximize the system

likelihood. This suggests that a technique like Sims's Bayesian

interpolation of the likelihood surface may be useful (Sims

1986). The optimal values in Table 3 are quite extreme, espe-

cially for SUM and NOMWT. (SUM was always the last hyperparameter

whose values were searched, and its value was set to zero during

the initial searches over values of the other hyperparameters.

NOMWT, by contrast, was generally among the first three or four

hyperparameters searched over.) Together they keep the sums of

coefficients fixed at their prior means. The rapid rate at which

parameters decay toward their prior means (DECAY) is also unusual.

There are other anomalies in Tables 2 and 3. Despite

the tight priors and rapid decay toward the prior means of its

coefficients, the model of Table 3 shows slightly more cross-vari-
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able interaction in its variance decompositions than the first

BVAR. Also, despite a stronger system likelihood and generally

stronger equation likelihoods, the Table 3 model's root mean

squared errors are generally higher than for the BVAR of Table 2.

Maximizing solely the likelihood of the IPINSS equation

appears to imply modest changes in forecast performance but more

substantial changes in the coefficients of the models. As shown

in Table 4, the system likelihood for the IPINSS optimized model

is lower than in Tables 2 or 3. Nonetheless, the equation likeli-

hood for IPINSS and some root mean squared errors are superior in

Table 4. The lower panels of Figures 9-14 also suggest that the

model of Table 4 predicts IPINSS somewhat better, and other vari-

ables somewhat worse, than the other BVARs.

The running totals of one-step-ahead forecast errors in

Figures 9-14 give a somewhat different perspective on the model of

Table 4. For all variables except DIR, the Table 4 model has less

of a tendency to consistently under or over predict during the

1981-83 period, as shown by the gaps that open up at that time in

panel I of Figures 9-14. Thereafter, the lines in the I panels

are roughly parallel, suggesting nearly equal tendencies to under

or over predict. The superiority of the Table 4 model in 1981-83

may be just a fluke, attributable to the small sample size. Or it

may be evidence that the Table 4 model captures useful information

about turning points that the Table 2 model misses. Perhaps time

will tell.

The difference in the Table 4 model's forecast perfor-

mance appears to be small, however, compared to the change in the
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coefficients of the model. Figures 15-19, for example, generally

show that the coefficients of the Table 4 model have evolved very

differently from those of the Table 2 model (and the coefficients

of the Table 3 model don't evolve at all). One difference is that

the coefficients optimal for forecasting IPINSS allow much more

interaction among variables. Table 4 reveals much lower degrees

of autonomy in its variance decompositions of all endogenous

variables, at least after one year. This may be due to the zero

values of the hyperparameters SUM and NOMWT chosen in the maximi-

zation of the likelihood of IPINSS. The relatively high degree of

time variation in the model's coefficients could also play a

role. Also note that in both models changes in coefficients were

especially rapid in about 1982 and, to a lesser degree, about

1985.

The generally moderate changes in the BVAR models'

forecasting performance as the hyperparameters are varied around

the optimal values is encouraging in one sense. As discussed

above, this is one of the conditions necessary for interpreting

the likelihood maximization performed here as an approximately

Bayesian procedure. The forecasts of all of the models above have

been fairly similar historically, and any one of them thus approx-

imates reasonably well the mode of a Bayesian posterior distribu-

tion over future events. This convenient result may not extend to

questions about the structure of the Chilean economy, given the

wide variation the models show in the relationships among vari-

ables and the evolution of coefficients.



- 20 -

Conclusion

In some ways, this initial attempt to estimate a Chilean

BVAR has been successful. With no significant modifications, the

DLS method produces a multivariate model that captures at least a

small degree of interaction among key macro variables while

achieving much higher DLS likelihoods and perhaps slightly lower

root mean squared forecast errors than a system of univariate

equations. DLS suggest that this is not a trivial accomplishment.

At the same time, the Chilean BVAR of Table 2 is not a

lot better than or even very different from a system of univariate

equations. Further research on Chilean BVARs should probably look

for improvements in three directions. One path toward possible

improvements would be to tailor the DLS method to the Chilean

situation. This could be done, for example, by modifying the time

variation of the coefficients to make them more stable within but

less stable across policy regimes. (The tendency for the models'

coefficients to change rapidly during periods of well-known policy

shocks, such as during 1982, recommends this path. See Figures

15-19.) It could also be attempted through the specification of

restrictions on the variance-covariance matrix of the disturbance

terms, perhaps with an eye toward achieving the kind of structural

identification discussed by Sims (1987). An alternative way to

improve Chilean BVARs would be to reconstruct a longer macroeco-

nomic dataset. Finally, Sims has suggested further modifications

(beyond the BEGWT and NOMWT priors used here) to the DLS method to

allow for nonnormality and conditional heteroscedasticity in the

distributions of the equation error terms.
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Table 1

Performance Statistics for a BVAR Model With

An Approximately Univariate Hyperparameter Setting (2 lags)

Hyperparameters

OWN
CROSS
CON
WT
TITE

100,000,000.00
0.000,000,000,1
100,000,000.00
0.0
1.0

SUM
BEGWT
NOMWT
TVAR
DECAY

0.0
0.0
0.0
0.0
1.0

Performance Statistics

DLS Likelihood

SYSTEM

+389.72

IPINSS M1NPS WPI XCH

+200.61 +216.28 +237.63 +201.84

KINF

-382.33

Typical Forecast Errors* (percent)

IPINSS

1-month-ahead
6-months-ahead
12-months-ahead

Autonomous Portion of Forecast Error Variance** (percent)

LIBOR

1-month-ahead
6-months-ahead
12-months-ahead

PCOB MINPS WPI XCH KINF DIR IPINSS

100.0
100.0
100.0

98.3
98.3
98.3

99.5
99.5
99.5

92.2
92.2
92.2

90.6
90.6
90.6

98.5
98.5
98.5

87.5
87.5
87.5

*Root-mean-squared errors in simulated out-of-sample forecasts
to November 1987.

from June 1981

**Portion of forecast error variance attributed to own innovations. Computed
from coefficients that were estimated over the full 1976-87 period and vari-

ance-covariance matrix of disturbances that was estimated over the October
1978 to December 1987 period. Choleski decomposition of variance-covariance
matrix performed with variables ordered as here (from LIBOR to IPINSS).

DIR

-84.32

M1NPS

3.21
6.48
9.58

WPI

2.94
11.65
21.11

XCH

2.50
13.06
23.83

KINF

3.31
18.53

35.28

DIR

136.56
163.88
193.57

19.99
38.94
47.23

85.8
85.8
85.8

__ __ _ _ _ __

--
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Table 2

Performance Statistics for a BVAR Model With

Hyperparameters Set to Maximize the DLS Likelihood

Hyperparameters

OWN
CROSS
CON
WT
TITE

0.01
0.00001
1000.0
1.0
10.0

SUM
BEGWT
NOMWT
TVAR
DECAY

25.0
0.0
2.0
0.0
1.0

Performance Statistics

DLS Likelihood

SYSTEM

+472.10

IPINSS M1NPS WPI

+197.36 +225.73 +296.36 +206.86

Typical Forecast Errors* (percent)

IPINSS

1-month-ahead
6-months-ahead
12-months-ahead

Autonomous Portion of Forecast Error Variance** (percent)

LIBOR

1-month-ahead
6-months-ahead
12-months-ahead

PCOB M1NPS WPI XCH KINF DIR IPINSS

100.0
100.0
100.0

98.2
98.2
98.2

99.6
99.3
96.1

99.6
99.4
98.7

84.2
84.3
84.3

98.0
98.0
98.0

85.8
85.8
85.6

*Root-mean-squared errors in simulated out-of-sample forecasts from June 1981
to November 1987.

**Portion of forecast error variance attributed to own innovations. Computed
from coefficients that were estimated over the full 1976-87 period and vari-
ance-covariance matrix of disturbances that was estimated over the October
1978 to December 1987 period. Choleski decomposition of variance-covariance
matrix performed with variables ordered as here (from LIBOR to IPINSS).

XCH KINF

-372.22

DIR

-81,.98

M1NPS

3.31
6.59
10.32

WP I

2.74
8.47
12.39

XVH

1.73
10.18
16.27

DIRKINF

3.20
17.86
33.34

128.60
151.98
181.52

19.66
35.10
39.88

91.7
91.5
90.5
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Table 3

Performance Statistics for a BVAR Model With

Hyperparameters Set to Maximize the DLS Likelihood of WPI Only

Hyperparameters

0.08
0.01
1.0
3.0
2.0

SUM
BEGWT
NOMWT
TVAR
DECAY

100,000.0
3.0
10,000,000.0
0.000,000,001
0.999

Performance Statistics

DLS Likelihood

IPINSS M1NPS WPI XCH KINF

+202.15 +225.04 +301.85 +213.94 -371.57

DIR

-85.05

Typical Forecast Errors* (percent)

IPINSS

1-month-ahead
6-months-ahead
12-months-ahead

Autonomous Portion of Forecast Error Variance**

LIBOR

1-month-ahead
6-months-ahead
12-months-ahead

PCOB M1NPS WPI XCH KINF DIR IPINSS

100.0
100.0
100.0

98.2
98.2
98.2

99.7
97.1
91.7

99.5
93.8
86.4

83.5
83.4
83.3

98.6
98.6
98.6

86.8
86.7
86.5

*Root-mean-squared errors in simulated out-of-sample forecasts
to November 1987.

from June 1981

**Portion of forecast error variance attributed to own innovations. Computed
from coefficients that were estimated over the full 1976-87 period and vari-
ance-covariance matrix of disturbances that was estimated over the October
1978 to December 1987 period. Choleski decomposition of variance-covariance
matrix performed with variables ordered as here (from LIBOR to IPINSS).

OWN
CROSS
CON
WT
TITE

SYSTEM

+486.37

M1NPS

3.29
7.01
12.53

WPI

2.95
13.14
30.42

XCH

1.75
11.85
22.67

DIRKINF

3.04
16.24
29.09

127.69
151.16
182.93

20.14
39.42
50.04

(percent)

91.7
87.9
80.9
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Table 4

Performance Statistics for a BVAR Model With

Hyperparameters Set to Maximize the DLS Likelihood of IPINSS Only

Hyperparameters

OWN
CROSS
CON
WT
TITE

0.7
0.001
2000.0
1.0
10.0

SUM
BEGWT
NOMWT
TVAR
DECAY

0.0
0.0
0.0
0.00001
1.0

Performance Statistics

DLS Likelihood

SYSTEM

+451.61

IPINSS M1NPS WPI XCH

+211.63 +211.29 +289.14 +200.43 -372.31

Typical Forecast Errors* (percent)

IPINSS

1-month-ahead
6-months-ahead
12-months-ahead

Autonomous Portion of Forecast Error Variance** (percent)

LIBOR

1-month-ahead
6-months-ahead
12-months-ahead

PCOB M1NPS WPI XCH KINF DIR IPINSS

100.0
100.0
100.0

98.2
98.2
98.2

99.4
65.0
35.4

99.9
53.9
27.4

83.8
79.5
59.6

96.5
96.5
96.5

84.9
82.6
73.7

*Root-mean-squared errors in simulated out-of-sample forecasts
to November 1987.

from June 1981

**Portion of forecast error variance attributed to own innovations. Computed
from coefficients that were estimated over the full 1976-87 period and vari-
ance-covariance matrix of disturbances that was estimated over the October
1978 to December 1987 period. Choleski decomposition of variance-covariance
matrix performed with variables ordered as here (from LIBOR to IPINSS).

KINF DIR

-88.56

M1NPS

2.98
5.59
9.06

WPI

2.91
10.95
20.73

XCH

1.77
11.01
20.45

DIRKINF

3.26
19.62
38.04

126.36
150.86
173.00

20.23
36.53
42.38

93.5
83.3
68.5
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FIGURE 3: WPI
(Wholesale price index)
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FIGURE 6: DIR

(Domestic INTEREST RATES)
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FIGURE 7: LIBOR
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FIGURE 9:
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FIGURE 9 (CONTINUED)
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FIGURE 10:

HISTORY OF ERRORS IN FORECASTING M1NPS
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FIGURE 10 (CONTINUED)
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FIGURE 11:

HISTORY OF ERRORS IN FORECASTING WPI
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FIGURE 11 (CONTINUED)
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FIGURE 12:

HISTORY OF ERRORS IN FORECASTING XCH
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FIGURE 20A: SUCCESSFUL AXIAL SEARCH

O
H

1

FIGURE 20B: UNSUCCESSFUL AXIAL SEARCH

Explanation: Each graph shows two searches. Each search begins

0 0
at the initial guess (H 1,H2 ). The search denoted

by --------------- and * first optimizes H1 while fixing

0
H2 at H2 . It then optimizes H2 while fixing H1 and

H1. The search denoted by - - - - - - - or ~ first

optimizes H2  (with H1=HO) and then optimizes H1

(with H2=R2).
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