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I. INTRODUCTION

The recent interest amongst economists in univariate and,

especially, multivariate mixed Auto-Regressive Moving-Average (ARMA)

models and related estimation procedures is partly due to the fact that

many economic problems are most naturally formulated in terms of such

models (for example see Sargent [9]), and partly due to the existence of

computationally feasible algorithms for estimating these models. The

estimation problem has been studied by a number of authors both in the

frequency domain and in the time domain. Among frequency domain procedures

one can cite the works of Hannan ([5], [6]) and Hannan and Nicholls [7].

Even though the frequency domain methods can be shown to be asymptotically

efficient, in multivariate cases computational difficulties are, more or

less, prohibitive. Time domain methods, on the other hand, are not only

computationally feasible but lend themselves to easy interpretations in

terms of more familiar regression techniques. In this category Marquardt [8]

deals with the problem of estimation for univariate models. Wilson [11]

has extended Marquardt's method as they apply to multivariate cases.

This paper reformulates Wilson's problem and offers an alternative,

though somewhat similar, algorithm for estimating the parameters of

vector ARMA processes.

II. THE MODEL AND SOME PRELIMINARY RESULTS

In this paper we are concerned with the following model:

Xt + t- + ... + pXt-p = + (e2 + ... + e t -
p t t-1 q t-q

(2.1)
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where X t = {xit}; i=, ... , m is an m component vector stationary stochastic

process with zero mean, and E = {Eit}; i=1, ... , m is a vector of

random variables satisfying:

EEit jt = 0 Vi, j, s, s # 0

EctEt = S < oo

We shall assume that the lengths of AR and MA parts (p and q) are

predetermined and henceforth take them as fixed. The unknown parameters

of the model are the matrices i', i=l, ... , p; 8i i=l, ... , q and Q.

Following Wilson [11] we shall refer to these parameters, excluding Q,

collectively as B = {B.} i=l, ... , K where K = m (p+q).

Throughout the paper it will be assumed that the zeros of the

characteristic polynomials of both AR and MA parts lie outside the unit

circle so that equation (2.1) has a pure AR representation as well as a

pure MA representation.

In equation (2.1) series ct are not directly observable but

their estimates, at, can be generated from Xt series recursively for

each set of parameter estimates a = (B.1 i=l, ... , K. The following
1

results are borrowed from Wilson [11] without proof:

lim Z a a' = (2.2)
t=l

lim 1 t Ia

T 1 (.) a' = 0 (2.3)
t=l j
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rn 1 T aa Ba'

-T- ( ) ( af3) = 0 (2.4)
t= 1  i j

2lir 1 T at ,

T- ( -aY) at = 0 (2.5)
t-l 1 j

1 T -1i
T a't S2 a = m (2.6)

t= 1  t

where Q is the estimate of Q given by

T Z a a'
T t t

t=l

If we assume that at has a joint normal distribution, then the log

likelihood function for the parameters 8 and Q can be written as:

mT T 1 T -1
log L = - log 27r - (logl I+ a' t at) (2.7)t tt=l

By virtue of (2.6) we can simplify the log likelihood function as:

log L = - (l+log2) - log I (2.8)

Hence maximizing the likelihood function is equivalent to minimizing II.

Due to highly nonlinear nature of the objective function (2.8),

analytical methods for finding the extrema are computationally unfeasible.

Instead, the approach that was taken in the literature was to devise

iterative schemes that converged to extrema of the objective function

(for examples, see Amemiya [1], [2]; Berndt, Hall, Hall, Hausman [3];

Wilson [11]). Basically, all these methods involve the following steps:

(1) choose a starting parameter vector 8(0); (2) generate a.(0); (3) calculate

the matrix (0) as an estimate of §; (4) using (0), a ,(0) and (0) , calculate
t
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parameter corrections h(0) and corrected parameters (1) (0) + h(0)

and go to step (2). The key problem in nonlinear estimations is to

devise a criteria for choosing h ( 0 ) such that not only convergence is

assured, but the resulting parameters have some desirable statistical

properties.

III. APPROXIMATE THEORY

Let u be a vector of length mT that consists of stacked a's so

that the first T elements of u. are a through alT, the second T elements

a21 through a 2T and so on. In what follows we shall include a superscript

of the form (i) to denote that the variable in question is calculated on

the basis of parameters as obtained at iteration (i). Initial values

will correspondingly be denoted with the superscript (0).

In order to synthesize an algorithm we start by expanding

(i+l)
u (i+) into Taylor series:

(i+l) (i) (i) (i+l)u = u - F h + Remainder (3.1)

where -(i) is an mT x K matrix of partial derivatives of u. with respect

to parameters B evaluated at = (i) and h(i+) (i+) (1)

Ignoring the remainder and rewriting (3.1) yields the following convenient

form:

(i) (i) (i+l) ^(i+l)
u = F h + u (3.2)

where u ( i + ) is hatted to indicate the approximation. An inspection of

(3.2) suggests that parameter corrections, h(i+l), could be obtained by

(i) (i) (i+l)
regressing u on F , and the residuals of the regression will be u
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We, therefore, propose the following parameter corrections:

(i+l) (i)' (i) (i) (i)' (i) (i)h (Mri) (i) (i) u )

where (i) is a positive definite matrix to be determined.

Recall from (2.6) that

1 T a ( i ) ' (i) a(i)=mT t t
t=l

n
Let Q = - V

m
where A = I52

Then substituting in (3.4) yields

T t t
t=l

In terms of u's

1 _(i)'
T

-1( i ) -(V) I T ) u ( i ) (i)= A

At this point we propose to take, in equation (3.3),

-1 -1
(i (V(i))Y = (V l)

so that

(V(i) -  T)u(i)IT)h(i+) ( (ri)(V(i)-1 T

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

F(i) -1(i) (3.8)
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It is a well known result that residuals from GLS with covariance matrix

given by (3.7) minimize the quadratic form

-11 ^(i+)' (i) ^(i+l)
Tu (V 0 IT) (3.9)

which can be written in terms of a's as

T -i1 ^(i+1)' (i) ^(i+1)
T Z a V a

t=l

(i) 1T -1(i+l)A 1 (i+l)'(i) (i+)
m T t t t

t=l

(i) (i+l)

-m (3.10)

-1
(i+l) (i+1) (i)

where TQ is the trace of . As at iteration step

(i+l), i) and m are fixed, then minimizing (3.9) is equivalent to

minimizing, T(i+)

Proposition A: Given (i) and T ( i + l ) there exists an upper bound on

^(i+l) = (i+l)

Proof:

-1
Let S = qli-2\i

ThenS = (i+) (i)-
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A IS '(i) (3.11)

Given A (i) then sup A( i + l ) 
= sup SI'A(i) = A(i) sup ISi.

Let the diagonal matrix A be the matrix of characteristic roots of S,

and T be the trace of S. Then we have

m

Ise= IAsJ = X

s i
ii=l=

m

1=1

It can easily be shown that given Ts, ISI will be maximized when
1 ... = = X. Hence
1 2 m

T T
A =-m and sup ISI = ]m

m m

and therefore

sup A(i+l) = [T]mA(i) (3.12)m

Proposition B: Parameter corrections as given by (3.8) minimize the

least upper bound of A(i+l)

Proof: Proof follows directly from (3.12) by substituting T( i + ) for

Ts and noting that parameter corrections minimize T( i +l ) as given by

(3.10).



-8-

Proposition C: T(i+l) < m

Proof: It has been established that

1 ^(i+l)' (-1 ^(i) A+1) 0) (i+l)
u (V ® IT)U -m

Now if we substitute (3.2) into (3.9) and use the definition of h(i+l)

together with (3.6), we get

A(i)(i
(i1 ( (3.13)T i+ =) A(i) - u (i) Ru(i) (3.13)

where

-1 -1 -1 -1
(V( i )  0 I T)  

i ) ( 
) (V i ) -0I T r(i) -1 r  ( i ) V ( i ) 1I T)

Then T(i+l) < m follows from noting that R is a nonnegative definite

matrix.

Based on propositions A, B, and C we now propose the following

algorithm.

(i) (i)1. Given the parameter vector 8 , generate the vectors a recursivelyt

using equation (2.1).

2. Compute the sample covariance matrix Q(i) and the related determinant

A(i) and matrix V( i )

(i) (i)3. Form the vector u by stacking the vectors a and compute the
t

partial derivative matrix F( i ) . Note that using the formulas that

generated at , the partial derivative matrix can be computed

analytically in a very simple manner.

r
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4. Check for convergence by the following two methods:

a. )- A(i+l) < some prescribed tolerance.

b. max T)u(i) < some prescribed tolerance.

5. Compute the candidate parameter corrections h(i+l) using equation

(3.8), and check whether

-1h(i+)' (i)'(v(i)- (3.14)T)(i)

h(i+l)' h(i+l) (3.14)

is satisfied, where a is a constant less than one. If satisfied

go to step (7).

6. If (3.14) is not satisfied, increase the diagonal elements of

-1
(i) 1

(V 0 IT) and go to step (5).

7. Form the corrected parameters

(i+l) (i) + h(i+1)

where 6 is chosen in a manner described by Berndt, [3:p 656]; and

go to step (1).

As a result of the convergence theorem by Berndt et al.

[3:p 656] the algorithm described above assures that

lim i' (i) ( i
lm (' V(i) (V i)u(i) = 0

so that the iterative process is assured of convergence.
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IV. VARIANCE-COVARIANCE MATRIX OF ESTIMATES

In this section we derive the asymptotic variance-covariance

matrix of the vector B using the well known properties of maximum

likelihood estimates, that they are consistent and asymptotically

efficient. We start by noting that asymptotic efficiency implies

asymptotic variance-covariance matrix of estimates is equal to

2 og -1

-E [ ]

which is the Cramer-Rao

From equation

log L = -

alog L

21log L

aaa6 '

lower bound (see Theil [10]:p 386).

(2.8) we get

mT T7 (l+log2) - log A

2 A B2 2T 1 a2 A a '

2 o af~af,

(4.2)

(4.3)

(4.4)

Now using the definition of A as given by equation (3.6) we

get

a2A 2 au i Bua = 2 [(au)',(V- IT) (U)]

Substituting (4.5) into (4.4) yields

log L _ 1 lu -1 I u
S- [( '(V It ')]

(4.5)

(4.6)

(4.1)
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Noting that maximum likelihood estimates are consistent,

and recalling the definition of the matrix F, we can write the asymptotic

variance-covariance matrix of the vector B as

-1
var (8) = A [F' (Vl T -

(4.7)
where (4.7) is evaluated at optimal parameter value(4.7)

where (4.7) is evaluated at optimal parameter values.
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