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1. Introduction

As one of the most useful workhorses in modern economics, the stability properties of the

stochastic growth model have been extensively studied. The original work on stochastic

growth was by Brock and Mirman (1972). They extended the deterministic growth model

of Ramsey (1928), Cass (1965), Koopmans (1965) and others to a stochastic setting. They

showed that the existence, uniqueness and stability results of the deterministic case are

also realized under similar assumptions on preference and production technology. In their

analysis, certain restrictions were imposed on the production function and distribution of

shocks. In particular, the shock was assumed to have a compact support and this helped

to provide a compact state space in their analysis. Subsequent research has aimed at

relaxing some rigid assumptions of Brock and Mirman’s work. Stachurski (2002) studied

a stochastic model in which the shock was unbounded. His paper was based on recent

innovations in the theory of stochastically perturbed dynamic systems. In his paper, the

state of the economic system (i.e. distribution of output at the beginning of time t) was

represented by a density. He showed that the system is both Lagrange stable and strongly

contractive, which are sufficient conditions for stability.

Nishimura and Stachurski (2005) used results from irreducible Markov chain theory to

study stability. Their paper proposed a Euler equation technique for analyzing the dynamic

system. It combined the Euler equation of the optimal program with the Foster–Lyapunov

theory of Markov chains. The simplicity of this technique allows the elimination of several

conditions required in earlier studies.

Nishimura and Stachurski’s results are based on the irreducibility1 of the Markov chain.

In order to guarantee that, they assumed that the productivity shock has a density and

that the density is positive everywhere. While this assumption is innocuous in their con-

text, irreducibility is either too restrictive or simply very difficult to verify in many other

environments. This is particularly the case in economic models with state variables in-

cluding both exogenous and endogenous variables. To fix these ideas, let us examine a

simple example. Suppose that in a dynamic economic model there are exogenous shocks
1A Markov process with state space S and transition kernel Q(·, ·) is called irreducible if there is a

non-zero measure ψ on S such that for any initial point s ∈ S, and any subset B with positive measure

under ψ, Pr{st ∈ B|s0 = s} > 0 for some t.
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{xt} following a Markov process,

xt+1 = f(xt, εt), {εt} is independently and identically distributed (i.i.d.),

an endogenous state variable {yt} and a control variable {ct}. The optimization problem

is

max
ct

∞∑

t=0

βtU(xt, yt, ct) such that yt+1 = g(yt, ct).

If the optimal policy function is ct = c (xt, yt), the exogenous state xt and endogenous state

yt evolve together as a Markov process:
(

xt+1

yt+1

)
=

(
f(xt, εt)

g(yt, c(xt, yt))

)
.

Even if the Markov process xt is irreducible, it is typically hard to verify that (xt, yt) is

irreducible. The reason is that in most cases, we can only obtain limited information about

c(xt, yt), instead of having an explicit functional form. This makes it difficult to predict the

movement of {yt}. The difficulty of verifying the irreducibility condition urges us to find

alternative approaches in achieving stability of dynamic systems. This paper proposes the

use of stochastic monotonicity as a tool in understanding the structure of dynamic systems.

By looking at the stochastic-dominance relationship between state variables yt and yt+1,

together with the monotonicity of the policy function, we can predict the relationship

between yt+1 and yt+2. Taking this to the limit, we first show the existence of an invariant

distribution and then prove the stability of the system. This is motivated by the simple fact

that in a deterministic growth model, there is a unique steady-state level k∗ of capital. If

the initial capital k0 is less than k∗, then k0 < k1, and inductively kt < kt+1 for every t ≥ 1.

If the initial capital is greater than k∗, we obtain a monotonically decreasing sequence of

capital. This paper shows that the pattern of monotonic convergence in the deterministic

case still holds in the presence of technology shocks.

The idea of using stochastic monotonicity to study dynamics systems is not new.

Hopenhayn and Prescott (1992) noted that stochastic monotonicity arises in economic

models from the monotonicity of decision rules. They argued that the existence of an in-

variant distribution can be proved if the state space is compact, which implies compactness

of the set of probability measures on the state space. They also provided conditions un-

der which optimal decisions are monotonic functions of the state and induce a monotonic

Markov process.
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The main innovation here is the method of constructing a compact subset containing

a fixed point in the dynamic system. Since we are dealing with a general state space,

the set of all probability distributions on the space may not be compact. This defies

the application of most fixed-point theorems. We find that by carefully constructing two

boundary distributions, we can actually show that the distributions confined by these two

boundary distributions form a compact subset, and this subset is absorbing and contains a

fixed point. Based on our method, the idea of stochastic monotonicity can be applied to a

wider range of economic dynamic systems. In the last section of the paper, we also discuss

some difficulties in applying this method.

The paper is organized as follows. Some useful mathematical results are reviewed in

Section 2. The stochastic growth model is introduced in Section 3. Section 4 discusses

properties of the transitional operator governing the evolution of output distribution. In

particular, continuity and monotonicity of the operator are studied. Section 5 shows the

existence, uniqueness and asymptotic stability of the invariant distribution. The final

section contains concluding comments.

2. Definitions and mathematical results

For any metric space S, we denote the Borel σ-algebra of S by B (S), and the set of all

probability measures on B (S) by Λ (S). If λ is a measure on B (S), then ‖λ‖ is its total

variation norm. If s ∈ S, then δs is the probability that puts mass 1 at s. Let Cb (S) be

the set of all bounded continuous functions on S.

A sequence λn of elements of Λ (S) converges weakly (or in distribution) to some λ

in Λ (S) if and only if
∫
S fdλn converges to

∫
S fdλ for all f in Cb (S). Using this notion

of convergence, we have a topology defined on Λ (S) called the weak topology. In this

paper, unless otherwise specified, we use weak topology when we discuss the convergence

of distributions.

A transition kernel on (S, B (S)) is a function Q : S ×B (S) 7→ [0, 1] such that: (1)

for each measurable set A ∈ B (S), the real valued function Q (·, A) is B (S) measurable;

and (2) for each point s ∈ S, the set function Q(s, ·) is a probability measure on B (S).

The number Q(s,A) should be interpreted as the probability that the economic system

will move from state s to some state in the set A during one period of time.

A transition kernel defines a linear operator T from bounded measurable functions to
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bounded measurable functions via the formula

(Tφ)(x) =
∫

φ(y)Q(x, dy).

The adjoint T ∗ : Λ (S) 7→ Λ(S) of operator T is defined by the formula

(T ∗λ)(A) =
∫

Q(x,A)λ(dx).

A transition kernel Q is said to have the Feller property if one of the following equivalent

conditions is satisfied.

(1) Tφ is bounded and continuous whenever φ is.

(2) T ∗λn converges to T ∗λ whenever λn converges to λ.

For any two probability measures λ, τ in Λ (R), λ (first-order)stochastically dominates

τ if
∫

φdλ ≥ ∫
φdτ for all bounded and increasing functions φ. If λ dominates τ , we write

λ º τ or τ ¹ λ. It is known that

λ º τ ⇔ Fλ(x) ≤ Fτ (x), all x ∈ R,

where Fλ(·) and Fτ (·) are distribution functions of λ and τ , respectively. A transition

kernel Q on (R, B(R)) is called monotonic if it satisfies any of the following equivalent

conditions:

(1) Tφ is bounded and increasing if φ is.

(2) T ∗λ º T ∗τ , if λ º τ .

(3) Q(x, ·) º Q(y, ·), if x ≥ y.

Let M ⊆ Λ(S) be a subset of probability measures. Then M is tight if for any ε > 0,

there exists a compact subset K ⊆ S such that λ(K) ≥ 1 − ε for all λ in M . If S is

complete and separable, then M is tight if and only if the closure of M is weakly compact.
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3. Stochastic growth model

This section gives a formulation of the stochastic growth model studied by Brock and

Mirman (1972) and Stachurski (2002). At the beginning of period t, the representative

agent receives income yt. In response, a level of consumption ct ≤ yt is chosen, yielding

current utility u(ct). The remainder is invested in production, returning output yt+1 =

εt+1f(yt − ct) in the next period. Here f is the production function and εt+1 is a non-

negative random variable, representing the production shock at t + 1. The process then

repeats.

Brock and Mirman (1972) assumed that shocks have a bounded distribution to simplify

the proof.

Definition 1 A distribution µ is bounded (both from above and from below) if there

are two numbers a, b, 0 < a < b < ∞, such that support(µ) ⊆ [a, b].

3.1 Assumptions

In this paper, we assume that u and f satisfy standard assumptions, but different from

Brock and Mirman, we allow the productivity shock to be unbounded.

Assumption 1 The production function f : R+ 7→ R+ is strictly increasing, strictly

concave, differentiable and satisfies the Inada condition

lim
x→0

f ′(x) = +∞, lim
x→+∞f ′(x) = 0.

Furthermore, f(0) = 0.

Assumption 2 The utility function u : R+ 7→ R is strictly increasing, strictly concave,

differentiable and satisfies lim
c→0

u′(c) = +∞.

Assumption 3 The productivity shock {εt}∞t=0 is a sequence of i.i.d. random variables,

with distribution µ ∈ Λ(R+), 0 < E(εt) < ∞.

3.2. Transition kernel

The conditional distribution of next-period output y′ given current output y and consump-

tion c is

Pr(y′ ∈ B) = µ( B
f(y−c)), if y − c > 0, for all B in B(R+),
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where B
f(y−c) = { y′

f(y−c) : y′ ∈ B}. However, if y − c = 0, since f(0) = 0, we know that

Pr(y′ = 0) = 1 and 0 is an absorbing state.

Let Q(y, c;B) denote the probability that the next-period output is in B, given that

the current income is y and consumption is c.

Q(y, c; B) =





µ( B
f(y−c)), y − c > 0

1, y − c = 0, 0 ∈ B

0, y − c = 0, 0 /∈ B

3.3. The optimal policy

Future utility is discounted at rate β ∈ (0, 1). The agent selects a sequence {ct}∞t=0 to

maximize expected utility.

maxE(
∞∑

t=0

βtu(ct)) such that yt = εtf(yt−1 − ct−1), 0 ≤ ct ≤ yt. (1)

Using dynamic programming, the maximization problem can be solved recursively. Let the

value function be V (y) and the policy function of consumption be ct = g(yt). The following

results are well known.

Theorem 1 Let u, f, µ satisfy assumptions 1−3; then the following results hold.

(1) The value function V is finite and satisfies the Bellman equation

V (y) = max
0≤c≤y

{u(c) + β

∫ ∞

0
V (y′)Q(y, c; dy′)}. (2)

(2) There exists a unique optimal policy g, such that

V (y) = u(g(y)) + β

∫ ∞

0
V (y)Q(y, g(y); dy′). (3)

(3) The value function is non-decreasing, concave and differentiable, with

V ′(y) = u′(g(y)). (4)

(4) The optimal policy g is continuous, 0 < g(y) < y, for all y > 0, and both y 7→ g(y)

and y 7→ y− g(y) are strictly increasing (savings and consumption both increase with

income).
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Proof. For parts (1 − 3), see Mirman and Zilcha (1975), pp. 331–332. Part (4) is

proved in Stokey et al. (1989), Exercises 10.1, pp. 288-289.

4. Properties of the transition kernel

We utilize an operator-theoretical approach to the invariant distribution problem. Substi-

tuting the optimal policy into the production relation yields a closed-loop law of motion

yt+1 = εt+1f(yt − g(yt)). (5)

To simplify notation in later discussion, we define

h(y) ≡ f(y − g(y)). (6)

Note that function h is strictly increasing, continuous, and h(0) = 0. If there is no con-

fusion, we also use Q(y, B) to denote Q(y, g(y);B). Since h is continuous, it is intuitive

that the transitional kernel Q (·, ·) satisfies the Feller property. Interested readers can find

a proof in Theorem 8.9 and Exercise 8.10 (pp. 234–237) in Stokey et al. (1989).

Now we study another important property of T ∗, namely, monotonicity.

Lemma 1 The transition kernel Q in the stochastic growth model is monotonic.

Proof. We need to show that x, y ∈ R+ and x ≥ y implies Q(x, ·) º Q(y, ·). For any

z ≥ 0,

a) if x > y = 0, then

Q(x, [0, z]) = µ([0, z/h(x)]) ≤ 1 = Q(0, [0, z]).

b) if x ≥ y > 0, then, since h is an increasing function,

Q(x, [0, z]) = µ([0, z/h(x)]) ≤ µ([0, z/h(y)]) = Q(y, [0, z]).

Therefore, Q is monotonic.

For a stochastic growth model, the state of the economic system can be represented

by a probability distribution of output yt. Suppose the distribution of yt is λt, then the

distribution of yt+1 is T ∗λt. Recall that T ∗ is an operator Λ(R+) 7→ Λ(R+). In the

language of dynamic systems, the time path of the system is {λt}∞t=0, with law of motion

λt+1 = T ∗λt. Starting from any initial distribution λ0, we can obtain the trajectory of λ0

by operator T ∗.
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5. Invariant probability distribution

For a dynamic stochastic system, we usually look at an invariant(or, stationary) distribu-

tion to study the long-run behavior of the process. The distribution of a state variable is

invariant, even though the state variable itself is stochastic over time.

Definition 2 λ ∈ Λ(R+) is called an invariant probability distribution if it is a fixed

point of the operator T ∗, that is λ = T ∗λ.

Lemma 2 δ0 is an invariant probability distribution.

Proof. Since Q(0, {0}) = 1, T ∗δ0 = δ0.

Lemma 3 If µ(0) > 0, then δ0 is the unique invariant probability distribution, and for any

initial distribution λ0,

lim
t→∞λt({0}) = 1. (7)

Proof. Since λt((0,∞)) = λ0((0,∞))(1 − µ({0}))t, the second statement is easily

proven. We can check lim
t→∞‖λt − δ0‖ = 0, which implies δ0 is the unique

fixed point.

Obviously, if µ({0}) > 0, the economy will die out with probability one. This is an

uninteresting case. From now on, we impose an assumption on µ.

Assumption 4 µ({0}) = 0.

When µ({0}) = 0, we can restrict the operator T ∗ on Λ(R++). This is because part

(4) of Theorem 1 implies that T ∗(Λ(R++)) is contained in Λ(R++).

5.1. Existence of a fixed point in Λ(R++)

In order to obtain a fixed point different from zero, we need another condition on µ.

Assumption 5
∫

x−1µ(dx) < ∞

Lemma 4 There exists a number s > 0, such that E(s/ε) = 1, µ((0, s]) > 0, and µ([s,∞)) >

0.
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Proof. Take s = [E(ε−1)]−1. We must show µ((0, s]) > 0 and µ([s,∞)) > 0. By

contradiction, suppose that µ((0, s]) = 0. Then ε > s(a.s.) implies E(ε−1) > s−1. This

contradicts the definition of s. The proof for µ([s,∞)) > 0 is similar.

If we redefine ε∗ = ε/s, f∗(·) = sf(·), and h∗(·) = sh(·), then the optimal growth

problem does not change in an essential way. So without loss of generality, we may assume

that [E(ε−1)]−1 = 1.

Lemma 5 There exists a number y > 0, such that h(y) > y for all y ∈ (0, y].

Proof. The first-order condition in the optimization problem is

u′(g(y)) = βf ′(f−1(h(y)))
∫ ∞

0
V ′(h(y)ε)εµ(dε).

The first-order condition (FOC) and the envelope condition V ′(y) = u′(g(y)) imply

V ′(y) = βf ′(f−1(h(y)))
∫ ∞

0
V ′(h(y)ε)εµ(dε). (8)

Then we have

V ′(y)
V ′(h(y))

=
βf ′(f−1(h(y)))

∫∞
0 V ′(h(y)ε)εµ(dε)

V ′(h(y))

≥
βf ′(f−1(h(y)))

∫
(0,1] V

′(h(y)ε)εµ(dε)

V ′(h(y))

≥ βf ′(f−1(h(y)))
∫

(0,1]
εµ(dε).

Since lim
y→0

f ′(f−1(h(y))) = ∞ and
∫
(0,1] εµ(dε) > 0, there exits a y > 0, such that if y ≤ y,

V ′(y)
V ′(h(y)) > 1 ⇒ h(y) > y.

Lemma 6 If z ∈ (0, y] and τz is the uniform distribution on the interval (0, z], that is, for

0 ≤ a ≤ b ≤ z, τz([a, b]) = (b− a)/z. We have

T ∗τz º τz. (9)

Proof. It is sufficient to show that for any m ∈ (0, z], (T ∗τz)((0, m]) ≤ τz((0,m]).

Applying the definition of T ∗, and using the fact that h(y) > y, we find that

(T ∗τz)((0,m]) =
∫ z

0
µ((0,m/h(y)])τz(dy)

≤
∫ z

0
µ((0,my−1])τz(dy).
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Figure 1:

From Figure 1, applying Fubini’s theorem and using the fact that E(ε−1) = 1 after nor-

malization, we obtain

∫ z

0
µ((0,my−1])τz(dy) =

∫ z

0

∫ my−1

0
µ(dx)τz(dy)

≤
∫ ∞

0

∫ mx−1

0
τz(dy)µ(dx)

≤
∫ ∞

0
mx−1z−1µ(dx)

= mz−1

= τz((0,m]).

Therefore, T ∗τz º τz.

For each z ∈ (0, y], we define subset Bz of Λ(R++) by

Bz = {τ ∈ Λ(R++) : τ º τz}. (10)

Lemma 7 T ∗(Bz) ⊆ Bz and Bz is a closed subset of Λ(R++).
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Proof. First part: Choose any τ ∈ Bz, then τ º τz. By the monotonicity of T ∗,
T ∗τ º T ∗τz º τz, and therefore T ∗τ ∈ Bz.

Second part: Choose a sequence {τn}∞n=1 in Bz converging to τ . We show that τ ∈ Bz.

Let Fτ , Fτn , and Fτz be the distribution functions of τ, τn, and τz, respectively. If y is a

continuity point of Fτ , then Fτ (y) = lim
n→∞Fτn(y) ≤ Fτz(y). Since continuity points are

dense in R, Fτ (y) ≤ Fτz(y) for all y.

So far, we have found the lower boundary (τz) of the dynamic system. Now we move

on to find the upper boundary. Recall that h(y) = f(y− g(y)) ≤ f(y) and we assume that

lim
y→∞f ′(y) = 0. Therefore, lim

y→∞h(y)/y = 0. There exists a y > 0, such that

∀y ≥ y, h(y) < y(E(ε))−1.

For any z ∈ [y,∞), let λz be the probability distribution with density function2

density at y =





zy−2, y ≥ z

0, otherwise

Lemma 8 λz º T ∗λz.

Proof. The idea of the proof is similar to Lemma 6. Choose m ∈ [z,∞). Applying

the definition of T ∗ and using the fact that h(y) < y(E(ε))−1, we find that

T ∗λz ([m,∞)) =
∫ ∞

z
µ ([m/h(y),∞))λz(dy)

≤
∫ ∞

z
µ

([
mE(ε)y−1,∞))

λz(dy)

=
∫ ∞

z

∫ ∞

mE(ε)y−1

µ(dx)λz(dy).

Applying the definition of λz and using Fubini’s theorem again, we obtain
∫ ∞

z

∫ ∞

mE(ε)y−1

µ(dx)λz(dy) ≤
∫ ∞

0

∫ ∞

mE(ε)x−1

zy−2dyµ(dx)

=
∫ ∞

0
xz(mE(ε))−1µ(dx)

= zm−1 = λz([m,∞)).
2It is easy to verify that

R∞
z

zy−2dy = 1.
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Figure 2:

Therefore, T ∗λz ([m,∞)) ≤ λz([m,∞)), and hence T ∗λz ¹ λz.

Similar to the definition of Bz, for any z ∈ [y,∞), we define

Bz = {λ ∈ Λ(R++) : λ ¹ λz}. (11)

Similar to Lemma 7, T ∗(Bz) ⊆ Bz. Bz is used as an upper boundary in finding an invariant

distribution.

Lemma 9 Choose z1 ∈ (0, y], z2 ∈ [y,∞), z1 < z2, then Bz1 ∩ Bz2 is a non-empty, convex

and compact subset of Λ(R++).

Proof. Convexity, closedness and non-emptiness are obvious. To show compactness in

the weak topology, we only need the condition that Bz1 ∩Bz2 is tight.

For any δ > 0, if λ ∈ Bz1 ∩Bz2 , then

λ
((

0, 1
2δz1

)) ≤ τz1

((
0, 1

2δz1

))
= 1

2δ

λ
((

2z2δ
−1,∞)) ≤ λz2

((
2z2δ

−1,∞))
= 1

2δ

Therefore, λ
([

1
2δz1, 2z2δ

−1
]) ≥ 1− 1

2δ − 1
2δ = 1− δ. Thus, Bz1 ∩Bz2 is tight.
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Proposition 1 Under Assumptions 1–5, there exists an invariant probability measure in

Λ(R++).

Proof. First, we show that T ∗(Bz1 ∩Bz2) ⊆ Bz1 ∩Bz2 .

T ∗(Bz1 ∩Bz2) ⊆ T ∗(Bz1) ∩ T ∗(Bz2)

⊆ Bz1 ∩Bz2 .

Since Q(·, ·) satisfies the Feller property, T ∗ is a continuous operator from Λ(R++) to

Λ(R++) under weak topology. By the Brouwer–Schauder–Tychonoff theorem (see p. 550,

Aliprantis and Border (1999)), T ∗ has a fixed point in Bz1 ∩Bz2 .

5.2. Stability of T ∗

As stated previously, {Λ(R++), T ∗} constitutes a dynamic system. We now study the

stability of the system.

Definition 3 The above system is globally asymptotically stable if there is a fixed point

λ∗ ∈ Λ(R++) and, for any other initial distribution λ0, lim
t→∞(T ∗)tλ0 = λ∗.

Lemma 10 Choose z1 ∈ (0, y], z2 ∈ [y,∞), z1 < z2. {(T ∗)tτz1}∞t=1 and {(T ∗)tλz2}∞t=1 con-

verge to (possibly different) fixed points.

Proof. From previous arguments, {(T ∗)tτz1} is monotonically increasing and belongs

to the compact set Bz1∩Bz2 . It follows that there is a convergent subsequence {(T ∗)tiτz1}∞i=1

of {(T ∗)tτz1}∞t=1. We denote the limit of this subsequence by λ∗.
We need to show that the sequence itself converges to λ∗ and that λ∗ is a fixed point.

If y is a continuity point of distribution function Fλ∗ , then

lim
i→∞

F((T ∗)tiτz1)(y) = Fλ∗(y).

Since {F((T ∗)tτz1)(y)}∞t=1 is a monotonic sequence, we obtain lim
t→∞F((T ∗)tτz1)(y) = Fλ∗(y),

which implies that lim
t→∞(T ∗)tτz1 = λ∗.

To show that λ∗ is a fixed point, taking the limit in (T ∗)t+1τz1 = (T ∗)(T ∗tτz1) yields

λ∗ = (T ∗)(λ∗).
The proof for (T ∗)tλz2 is similar.
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Proposition 2 Under Assumptions 1–5, {Λ(R++), T ∗} is globally asymptotically stable if

and only if T ∗ has a unique fixed point.

Proof. If {Λ(R++), T ∗} is globally asymptotically stable, it is obvious that the fixed

point of T ∗ is unique.

Conversely, suppose that T ∗ has a unique fixed point, denoted by λ∗. From Lemma

10, for arbitrary z1 ∈ (0, y], z2 ∈ [y,∞),

(T ∗)tτz1 → λ∗

(T ∗)tλz2 → λ∗

This implies that (T ∗)tλ0 → λ∗, for every λ0 ∈ Bz1 ∩ Bz2 . Now choose any λ ∈ Λ(R++)

and define λz2
z1
∈ Λ(R++) by

λz2
z1

((0, z1)) = 0, λz2
z1

({z1}) = ((0, z1])

λz2
z1

((z2,∞)) = 0, λz2
z1

({z2}) = λ([z2,∞))

λz2
z1

((a, b)) = λ((a, b)), if z1 < a < b < z2

Then λz2
z1
∈ Bz1 ∩ Bz2 , and by choosing z1 small enough and z2 large enough, ‖λz2

z1
− λ‖

can be made arbitrarily small.

To show (T ∗)tλ → λ∗, equivalently, we should show that for any φ ∈ Cb(R++)

lim
t→∞

∫
φ(y)((T ∗)tλ)(dy) =

∫
φ(y)λ∗(dy).

For any small δ > 0, choose z1 ∈ (0, y], z2 ∈ [y,∞) such that ‖λz2
z1
− λ‖ ≤ δ(2‖φ‖)−1.

Then choose N , such that t ≥ N implies
∣∣∣∣
∫

φ(y)((T ∗)tλz2
z1

)(dy)−
∫

φ(y)λ∗(dy)
∣∣∣∣ ≤ 1

2δ.

If t ≥ N , we have
∣∣∣∣
∫

φ(y)((T ∗)tλ)(dy)−
∫

φ(y)λ∗(dy)
∣∣∣∣

≤
∣∣∣∣
∫

φ(y)((T ∗)tλ)(dy)−
∫

φ(y)((T ∗)tλz2
z1

)(dy)
∣∣∣∣

+
∣∣∣∣
∫

φ(y)((T ∗)tλz2
z1

)(dy)−
∫

φ(y)λ∗(dy)
∣∣∣∣
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≤
∣∣∣∣
∫

(T tφ)(y)λ(dy)−
∫

(T tφ)(y)λz2
z1

(dy)
∣∣∣∣ + 1

2δ

≤ ‖T tφ‖.‖λz2
z1
− λ‖+ 1

2δ

≤ ‖φ‖.‖λz2
z1
− λ‖+ 1

2δ ≤ δ.

The equivalence result is thus established.

5.3. Uniqueness of the fixed point in Λ(R++)

The above proposition implies that in order to achieve global asymptotic stability, we must

prove the uniqueness of the fixed point of T ∗.
Our proof strategy is to utilize a process called the ‘reverse Markov process’, first

introduced by Brock and Mirman (1972). The ‘reverse Markov process’ is described by the

following transition function (note that the time index is backwards)

yt−1 = h−1(yt/εt), yt ∈ (0,∞), t ≤ 0, (12)

where {εt}−∞t=0 is a sequence of i.i.d. shocks. We show that, starting at any initial condi-

tion, this process will almost surely converge to 0 or ∞. This feature provides us with a

contradiction when we assume the existence of more than one invariant distribution.

Recall that yt+1 = h(yt)εt+1; therefore, yt = h−1(yt+1/εt+1). Also recall that there is

y > 0, such that

y ∈ (0, y] ⇒ h(y) > y.

For any z ∈ (0, y], we consider first the set (0, z]. The following rule

yt−1 =





h−1(min(yt/εt, h(z))), yt < z

z, yt = z
(13)

specifies a transition kernel on (0, z]. Thus, we can define a Markov process {yt}−∞t=0 using

Eq. (13), an i.i.d. sequence of shocks {εt}−∞t=0 , and any initial random variable y0 with

range in (0, z]. Note that this Markov process is a modification of the ‘reverse Markov

process’, in which once yt is larger than or equal to z, it is redefined to be z and stays there

afterwards.

Lemma 11 The above Markov process on (0, z] is a super-martingale, that is

E [yt−1|yt, yt+1, yt+2....y0] ≤ yt. (14)
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Proof. Since if yt = z, then E(yt−1|yt) = z = yt, it suffices to show that

E
[
h−1(min(y/ε, h(z)))|y] ≤ y, for any y < z.

Using the fact that h−1(y) < y, for y ≤ h(z), we find

E
[
h−1(min(y/ε, h(z)))|y]

< Eε [min(y/ε, h(z))|y]

≤ Eε [y/ε|y]

= y.

Lemma 12 For any z ≤ y and any initial random variable y0 taking values in (0, z) with

probability 1,

Pr(yt < z,∀t ≤ 0) ≥ Pr( lim
t→(−∞)

yt < z) ≥ µ([1, +∞)). (15)

Proof. First note that {yt}−∞t=0 is a non-negative super-martingale taking values in

(0, z]. By the martingale convergence theorem, Pr( lim
t→∞yt exists) = 1. We set an initial

random variable x to be

x = h−1(min(z/ε, h(z))), ε has distribution µ.

We show that for any y0, Pr( lim
t→(−∞)

yt < z) ≥ µ([1, +∞)). Let y = lim
t→(−∞)

yt and λyt ,

λx be the distributions of yt and x, respectively.

λy0((0, z)) = 1 ⇒ λy0 is dominated by δz

⇒ λy−1 is dominated by λx

⇒ λyt is dominated by λx, t ≤ −1

⇒ λy is dominated by λx

⇒ Pr(y < z) ≥ Pr(x < z) ≥ µ([1,+∞))

⇒ Pr( lim
t→(−∞)

yt < z) ≥ µ([1, +∞)).

Because z is absorbing, Pr(yt < z,∀t ≤ 0) ≥ Pr( lim
t→(−∞)

yt < z).
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Also recall that y > E(ε)h(y), for y ≥ y(or h−1(y) > E(ε)y, for y ≥ h(y)). Now

we consider the set [z,∞), where z ≥ y. Using an i.i.d. sequence of shocks {εt}−∞t=0 , the

following transition function

yt−1 =





h−1(max(yt/εt, h(z))), yt > z

z, yt = z
(16)

specifies a Markov process on [z,∞). This corresponds to a Markov process on (0, 1/z],

xt−1 =





1
h−1(max((xtεt)−1,h(z)))

, xt < 1/z

1/z, xt = 1/z
(17)

Lemma 13 The Markov process {xt}−∞t=0 defined above is a super-martingale.

Proof. As in the proof of Lemma 11, it suffices to show that E
[

1
h−1(max((xε)−1,h(z)))

| x
]
≤

x, for x < 1/z. Using the fact that h−1(y) > E(ε)y, for y ≥ h(y), we obtain

E
[

1
h−1(max((xε)−1,h(z)))

| x
]
≤ Eε

[
1

E(ε)max((xε)−1,h(z))
| x

]

≤ Eε

[
1

E(ε)(xε)−1 | x
]

= x.

Using the same proof as in Lemma 12, we also know that for any initial random variable

x0 taking values in (0, 1/z) with probability 1,

Pr(xt < 1/z, ∀t ≤ 0) ≥ µ((0, 1]). (18)

Returning to the transition kernel in Eq. (16), it is evident that for any initial random

variable y0 taking values in (z,∞), and the corresponding Markov process {yt}−∞t=0 ,

Pr(yt > z,∀t ≤ 0) ≥ µ((0, 1]). (19)

Now we study the ‘reverse Markov process’. Let us assume that µ is either unbounded

from below or unbounded from above. For bounded shocks, we can refer to the uniqueness

proof of Brock and Mirman (1972).
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Lemma 14 Suppose the shock ε is unbounded. Choose any number z1 ∈ (0, y] and any

number z2 ∈ [y,∞), then there is a π > 0, such that for all y0, Pr(yt ∈ (0, z1)∪(z2,∞), ∀t ≤
−1) > π, where {yt}−∞t=0 is the ‘reverse Markov process’.

Proof. If µ is unbounded from above, that is µ((N,∞)) > 0, for all N > 0, set

π = min {µ([1, +∞)), µ((0, 1]), µ((z2/h(z1),∞))} . min {µ([1, +∞)), µ((0, 1])} > 0

Then we prove that Pr(yt ∈ (0, z1) ∪ (z2,∞), ∀t ≤ −1) > π.

(1) If y0 ∈ (0, z1), then

Pr(yt ∈ (0, z1) ∪ (z2,∞), ∀t ≤ −1) ≥ Pr(yt ∈ (0, z1), ∀t ≤ −1)

≥ µ([1, +∞))

≥ π.

(2) If y0 ∈ (z1, z2], then

Pr(yt ∈ (0, z1) ∪ (z2,∞), ∀t ≤ −1) ≥ Pr(yt ∈ (0, z1), ∀t ≤ −1)

≥ Pr(y−1 ∈ (0, z1)).µ([1,∞))

≥ µ((z2/h(z1),∞)).µ([1,∞))

≥ π.

(3) If y0 ∈ (z2,∞), then

Pr(yt ∈ (0, z1) ∪ (z2,∞),∀t ≤ −1) ≥ Pr(yt ∈ (z2,∞),∀t ≤ −1)

≥ µ((0, 1])

≥ π.

The case for which ε is unbounded from below is similar.

Now we come to the central lemma of this section.

Lemma 15 For any z1 ∈ (0, y] and z2 ∈ [y,∞), if {yt}−∞t=0 is the ’reverse Markov process’,

then

Pr
(∃ t < 0, such that yt ∈ (0, z1) ∪ (z2,∞), ∀t ≤ t

)
= 1. (20)

In other words, if we think of 0 and ∞ to be a single point, the ‘reverse Markov process’

converges to this point almost surely.
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Proof. Equivalently, we show that

Pr(yt ∈ [z1, z2], i.o.) = 0.

By the Borel–Cantelli lemma, it is sufficient to show that
−∞∑

t=−1

Pr(yt ∈ [z1, z2]) < ∞.

We show this by contradiction; suppose
−∞∑

t=−1

Pr(yt ∈ [z1, z2]) = ∞.

Let At be the event {yt ∈ [z1, z2], ys ∈ (0, z1)∪ (z2,∞), ∀s ≤ t−1}. Since Pr(At) ≥ Pr(yt ∈
[z1, z2])π,

−∞∑

t=−1

Pr(At) ≥
−∞∑

t=−1

Pr(yt ∈ [z1, z2])π

= ∞.

This is a contradiction to the fact that {At}−∞t=−1 is a sequence of disjoint sets.

Proposition 3 Suppose ε is an unbounded shock, then under Assumptions 1–5, the in-

variant distribution is unique.

Proof. By contradiction, suppose there are two invariant distributions, with distribu-

tion functions F1, F2. For any y0 > 0:

F1(y0) =
∫

F1(h−1(y0/ε))µ(dε),

F2(y0) =
∫

F2(h−1(y0/ε))µ(dε).

If {ε0}−∞t=0 is a sequence of i.i.d. random variables with distribution µ, and {yt}−∞t=0 is

the ‘reverse Markov process’,

F1(y0) =
∫

F1(y−1)µ(dε0)

=
∫

F1(y−2)µ(dε−1)µ(dε0)

=
∫

F1(y−3)µ(dε−2)µ(dε−1)µ(dε0)

=
∫

F1(y−k)µ(dε−k) · · ·µ(dε0).
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Since lim
t→(−∞)

yt = 0(or ∞) a.s., by the dominated convergence theorem,

F1(y0)− F2(y0) =
∫

(F1 − F2)(y−k)µ(dε−k) · · ·µ(dε0)

= lim
(−k)→(−∞)

∫
(F1 − F2)(y−k)µ(dε−k) · · ·µ(dε0)

=
∫ [

lim
t→(−∞)

(F1 − F2)(yt)
] [⊗−∞t=0 µ(dεt)

]

=
∫

0
[⊗−∞t=0 µ(dεt)

]

= 0.

Therefore F1(y0)− F2(y0) = 0, for all y0 > 0. The distribution is unique.

The above proposition and Brock and Mirman (1972) give a complete solution to

uniqueness with general shocks.

6. Concluding comments

• Stachurski (2002) and Nishimura and Stachurski (2005) studied a stronger notion of

stability when they focused on shocks with densities. They showed that the distri-

bution will converge in total variation norm under certain conditions. However, in

general, it is impossible to prove this ‘strong convergence’ when we allow the shock to

have discrete values. This can be made clear when we look at the deterministic growth

model. It is well known that when ε is a constant, there exists a steady state y∗ > 0,

such that if y0 < y∗, then y0 < yt < yt+1 < y∗ for every t. It is easy to show that the

unique invariant distribution is δy∗ . The importance of this example is to suggest the

appropriate topology for convergence results in general. The total variation norm

does not work in this case, since if y < y∗, then ‖T ∗δy− δy‖ = ‖δh(y)ε− δy‖ = 2. This

is why we use weak convergence for stability analysis.

• Although the idea behind our method is fairly general, it might be difficult to apply

when studying other types of dynamic systems with non-compact state space. This

is mainly because of the difficulty in constructing the boundary distributions to start

with. In this paper, this is achieved by the careful use of Euler equations near
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boundaries. In order to apply this method to other dynamic systems, equal care in

understanding the behavior near the boundaries of those systems is required.
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