
Notes on Continuous Time Prediction

With an Abortive Application to

Macaulay's Test of the Expectations

Theory of the Term Structure

by

Thomas J. Sargent

September 1976

Working Paper #: 67

Rsch. File #: 258.1

The views expressed herein are solely those of the author and do not

necessarily represent the views of the Federal Reserve Bank of Minneapolis

or the Federal Reserve System.



Notes on Continuous Time Prediction

With an Abortive Application to Macaulay's

Test of the Expectations Theory of the Term Structure

by

Thomas J. Sargent

September 1976



Introduction

One of the first applications of the rational expectations

theory of the term structure of interest rates was Frederick Macaulay's

study of rates on call loans and three-month time loans during the

period 1890-1914. Since the time loan rate at a given moment could be

viewed as an average of call loan rates expected over the next three

months, Macaulay reasoned that time rates should lead call rates insofar

as expectations are accurate. In particular, Macaulay asserted that

rates on 90-day time loans should lead rates on call loans by 45 days.

To see what underlies this assertion, let R (t) be the rate on m-period

time loans and r(t) be the call rate. Let r(t+T) be speculators' forecast

of r(t+T) made at time t. According to the expectations theory of the

term structure, we have

m^
Rm(t) = i/ r(t+T)dT

m m 0

Assume that call loans are governed by a deterministic stochastic

process and hence are perfectly predictable from observations on their

own past. In particular, assume that

r(t) = cos wt

and

r(t+T) = cos w(t+T) .

Substituting into the term structure formula gives

R(t) = m cos w(t+T)dT
m m

S_ [sin w(t+m) - sin wt] ,
wm
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1/
which with the aid of standard trigonometric formulas can be written-

(0) R (t) = A cos[wt + m w]
m 2

Formula (0) gives the response of m-period time rates to a perfectly

forecastable call rate of cos wt. The time rate is predicted to lead

m 2/
the call rate by 2 units of time, just as Macaulay asserted.-

In the period 1890-1914, money market rates were characterized

by a pronounced seasonal. Macaulay studied the seasonal components of

time rates and call rates, and found a lead of time rates over call

rates, as predicted, though he claimed that the magnitude of the lead

was only about two-thirds of that predicted by the theory.

While Macaulay's estimate of the theoretical lead of time

rates over call rates is correct for a deterministic stochastic process

(i.e., one perfectly predictable from its own past), most econometricians

agree that economic variables should be modeled as processes containing

indeterministic (imperfectly predictable) elements. For indeterministic

processes Macaulay's theoretical estimate of the lead of the time rate

over the call rate is not a correct one, though it does serve as an

interesting limiting value for the phase shift at frequencies at which

r(t) displays a very sizable buildup of spectral power. This paper

calculates the theoretical lead of time rates over call rates under the

assumption that the call rate is an indeterministic process. This

provides a correct benchmark against which to judge Macaulay's empirical

results.

In performing these calculations it is useful to exploit some

results on the effects of aggregation over time. I have chosen to make

the natural assumption that speculators had data on the call rate at a
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much finer interval over time than is given by the monthly data that

were analyzed by Macaulay. I approximate this situation by assuming

that speculators in effect had continuous observations on r(t) over the

past. By positing a suitable continuous time stochastic model for r(t),

it is possible to use the rational expectations theory of the term

structure to deduce the relationship between the continuous time R (t)

and r(t) processes. Once this relation (projection) has been deduced, a

formula of Sims can be applied to obtain the corresponding discrete-time

model. Once this discrete-time model is available, the theoretical lead

(spectral phase) of the discrete-time rate over the discrete-time call

rate can be calculated at each frequency.

Rational Expectations with r(t) an Exogenous,

Continuous Time Process

Let Rm(t) be the yield to maturity on an m-period bond and let

r(t) be the call loan rate or the instantaneous rate of interest (also

sometimes called the force of interest). Let Ptr(t+T) be the linear

least squares forecast of r(t+T) based on information available at

time t. (I use Pt to denote "projection onto the space spanned by

information available at time t.") Then the rational expectations

theory of the term structure asserts

(1) R (t) = 1 m P r(t+T)dT
m m t

I initially assume that speculators have available a continuous

record r(s), -" < s < t which they use to form the linear least squares

forecast of r(t+T) based on this record. However, economists like

Macaulay do not have available for analysis the same continuous record.

Instead, to economists observations on R (t) and r(t) at only discretem
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points in time are available. In particular, the economist only has

observations on the series

R = R (t'I)
mt m

r = r(t*I)t

t = 0, + 1, + 2, ...

t = 0, + 1i, + 2, ...

where I is the sampling interval, which in the work below will be one

month. My purpose here is to characterize the relationship between the

discrete, sampled (or monthly) data Rmt and rt that will prevail where

(1) is the correct continuous time model.

I assume that the call rate r(t) is governed by the linear

stochastic differential equation

(2) (D + bn-1 Dn-1+ ... + b0 ) r(t) = S(t)

where D = d/dt denotes mean-square stochastic differentiation and where

f(t) is a continuous time white noise with intensity (scale) parameter

62. It is convenient to write equation (2) in the form

(3) (al + D)(a2 + D) ... (an + D) r(t) = (t)

where the aj's are the negatives of the roots of the characteristic

polynomial

n n-i
x + bnx + ... + bx + b = 0 .

For r(t) to be a stationary stochastic process, it is necessary that the

real part of each ac be positive. The solution of the stochastic

differential equation (3) is a stochastic process r(t) that is (n-l)

3/
times mean square differentiable- and whose spectral density is given

by4/
by-
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G2

(4) Sr(w) = n 2 2

S(a2 + w )
j=1

Where (3) is the stochastic process governing r(t), we seek

the linear least squares predictor of r(t+T) based on current and past

r(t)'s. To motivate our expression for this predictor, write (3) for

(t+T):

(5) (al + D)( 2 + D) ... (an + D)r(t+T) = E(t+T)

Now since (t) is a white noise process, it obeys 0 = Pt[ (t+T)]

(- P[(t+T)Ir(s), s < t]). Noting that projection is a linear operator

and writing r(t+T) - Ptr(t+T) then permits us to write

(6) (al + D)(a 2 + D) ... (an + D)r(t+T) = 0 ,

which is a deterministic differential equation in r(t+T) that we solve

subject to the natural boundary conditions supplied by the record r(s),

s < t. In particular, the boundary conditions are

r(t) = r(t)

(7) Dr(t) = Dr(t)

Dr(t) = Dn - r(t)

By the (n-l) times mean square differentiability of the process, the

.. n-l
random variables r(t), Dr(t), .. , D r(t) are known from the record

r(s), s < t. The solution of the deterministic boundary value problem

(6), (7), is (see Whittle [ ])

(8) r(t+T) - e J r(t) ,

j=1 kj k -
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which gives the linear least squares projection of r(t+T) on r(s), s < t

as a linear combination of values of r(t) and its first (n-l) time

derivatives evaluated at time t. Equation (13) is a version of a classic

formula for continuous time prediction due to Wiener.

Performing the integration indicated in (1), we combine (8)

and (1) to arrive at

(9)

which

(10)

where

Dk in

by

n -a.m a + D

R (t) = i 1 (1 - e ) I r(t)
mmj=1 lj kj k j

can be written compactly as

R (t) = hDk r(t)
m k=O

the hk's are determined by matching the coefficients on powers of

(9) and (10). The frequency response function of R to r is given
m

n-1

h(w) = Y hk(i w)k
k=0

(11)
n -a a + iw

= 1 (1 -e k) \k
j=1 j k k j

The spectrum of R (t) is linked to the spectrum of r(t) by
m

SR(w)= Ih(w) 12 (w)

The discrete data studied by Macaulay were monthly averages.

Such data can be thought of as being formed by the two-step procedure of

first taking a moving average of the original continuous time data, and

then second sampling the resulting continuous time monthly average

series once a month. The continuous time moving average processes are

defined by
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1/2
Ra(t) = I R (t+T)dT

m -1/2 m

1/2

=-1/2 b1 /2(T) Rm(t+T)dT

-1/2

ra(t) = I-/2 r(t+T)dT
1/2

_ b1
/

2 (T)r(t+T)dT
- 1/2

1 1/2 < T < 1/2
where bl/ 2 (T) =

0 TI < 1/2

Using (*) to denote convolution, we can write the above compactly as

Ra(t) = b * R(t)
m 1/2 m

ra(t) = bl/2*r(t)

The spectrum of

given by

(12)

sin
where

w

2

the continuous time moving average process ra(t) is

w 2
sin -

Sa (W) = 2 S(w)
r w r

2

2 r1/2 iw d

is the Fourier transform of the "unit box" bl/2()'

The spectrum of the process that is formed by sampling ra(t) at unit

intervals is given by "folding" sa(w):
r

(13) sa(w) = F[sa(w)]r r

Ss(w+2 7k)
k-- ro
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where F[ ] is the folding operator defined by

00oo

(14) F[f(w)] = fa(w+2k) .
r

k=-CO

Taking moving averages on both sides of (10), we have that the

continuous-time Ra(t) is related to ra(t) by (10) with R and r replaced
m m

by unit averaged versions of themselves:

(15) Ra (t) = hDkra(t) .m k

Equation (15) describes the relationship between the continuous time

process Ra(t) and ra(t). By applying a formula due to Sims, we can use
m

(15) to derive the implied model linking the discrete time, sampled

a a
processes R and r . These sampled processes are defined by

mt t

R a  = Ra(t) t = 0, + 1, + 2, ...
mt m -- -

ra ra(t) t = 0, + i1, + 2, ...t - -

a
Sims's formula implies that R has a representation

mt

Ra = Hra +s
mt Hkrt-k t

a
where Etr ttk= 0 for all t and k, and where

1 r +iwk
H = i H(w)e idw

k 2r -

The frequency response function H(w) is given by Sims's formula

(16) H(w) = F h(w) arw

Writing H(w) in polar form

H(w) = G(w)ei6(w)
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gives us a formula for the phase lead G(w) in radians, which is the

counterpart for our indeterministic model of the phase shift calculated

by Macaulay.

Estimation

Given observations on the discrete time, monthly averaged

data, we propose to estimate the parameters al,' "..., n of the underlying

continuous time process. The spectral density of the monthly average,

discrete time data is related to these parameters by

sin - 1

(17) S a ( w ) = o2F 2 n
r w 2 2

2I (a + w )
2 jl jj=1

The following frequency-domain procedure is asymptotically equivalent to

5/
maximum likelihood estimation.- First, define the Fourier transform of

ra , t=, ... , T as
t

T -iw. t

r(w.) = rae 3
t= 1  t

for w. = 2Tj
for w. j = 0, 1, ... , T.

J T

The periodogram I(w.) is defined as

I(w.) = Ir(w.)12

We choose al,..., a n to minimize the criterion (see Hannan [ ])

T-l I(w.)

j=0 Sa (W)rj

holding 02 fixed.

That is, with respect to . a we minimize
i' n
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T-1 I(w.)

j=O sin- I 1

F w n

2 2

2 H ( 2 w,
k=1 k

27T

where w. - -T , j = 0, i, ... , T.

Sample Empirical Results

Figures 1 and 2 show graphs of the spectra of monthly average

call rate and time rate over the period 1890-1913, calculated using a

Parzen window and a maximum lag of 48. Figure 3 shows the phase statistic

between the call rate and time rate (a negative phase means that the

time rate leads the call rate). At the seasonal frequency w = .52 (the

12-month periodicity) the phase indicates that the time rate leads the

call rate by only .13/.52 Z 1/4 months, which is much smaller than the

1 1/2-month lead predicted by Macaulay's calculations. It is also less

than the lead of about one month that Macaulay had actually estimated

empirically. This last discrepancy could be explained either by the

"window bias" in our Parzen estimator (which in effect averages across

the periodogram, thereby including a bias) or else by some defect in

Macaulay's procedure. I wouldn't venture to guess which at this point.

For the period 1890-1913, I estimated the parameters of a

thirteen-order differential equation using the method of the previous

section. (Actually only twelve parameters were estimated, a single real

root of cl = .5108 was imposed in order to prewhiten the series). In

place of the periodogram ordinates that appear in the minimization
T-l I(w.)

criterion ---- , we actually used the estimates of the spectral

j=0 r (wj
density reported above, this in order to economize on computations.
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Experimentation with the alternative procedure that actually uses the

periodogram ordinates showed that these two procedures gave very similar

parameter estimates, as one would expect.

Our parameter estimates were as follows:

Real Part

a = .5108000000

2 = .0000000238

a3 = .0000000238

a4 = .0000000355

= .0000000355

= .0000000203

= .0000000203

*= .0000000091

_ .0000000091

= .0000000001

= .0000000001

= .0000000001

13 = .0000000001
13

Imaginary Part

0.0000000000

0.3879150461

-0.3879150461

1.2048578216

-1.2048578216

1.9119125566

-1.9119125566

2.4637453220

-2.4637453220

3.1087259138

-3.1087259138

2.8673912625

-2.8673912625

Figure 5 reports the gain and phase discrete time H(w) function

implied by these estimates in conjunction with formula (16). Here a

6/
positive phase means that the time rate leads6- (excuse the break with

the convention used in our earlier empirical results, an accident of

the order in which the series were entered in a computer program). The

phase is approximately linear with slope very nearly the value of

1.5 months that is predicted by Macaulay's deterministic calculations.

Notice that neither the phase nor the gain resembles the configuration

displayed by our empirical phase and gain diagrams.
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Figure 6 graphs the discrete time Hk distributed lag coefficients.

Notice that the lag distribution is two-sided, though most of the weight

is placed on current and the first three past values. It is interesting

that the phase statistic is approximately linear despite this not being

a fixed delay system.

In all, these results indicate that the deterministic calculations

of phase made by Macaulay seem to provide a quite good approximation to

our continuous time indeterministic calculations, if not to the actual

date. That this is so surprised me.

Rational Expectations with Endogenous Call Rate

The preceding calculations proceed on the assumption that the

call rate r(t) in continuous time is a process that is strictly econo-

metrically exogenous with respect to the m period rate R (t). That is,
m

linear least squares forecasts of r(t) based on current and past r(s)

and Rm(s) are posited to depend only on the available record on r(s), so

that Rm(s), s < t, is assumed not to aid in predicting r. Here that

restrictive assumption is relaxed, as I take up the general case in

which past observations on R do help predict r.
m

I assume that the continuous time vector process (r(t), Rm(t))

is generated by the stochastic differential equation system

(18) DZ(t) = AZ(t) + Bu(t)

where
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r(t)

Dr(t)

Dn- r(t) ,u(t) =

R (t)m

DR (t)

Dn-1R (t)

ul(t)

0

0

0

u2 (t)

0

0

(n+l) row

1 0 0

0 1 0 . .

0 0

a a3
2 3

0 0

0 0

0 1 0

an an+1
0 0 1 0

0 0 0 1

0 0 0

n n+1

0 0

. . O

0 .. O

b 0 .. 0
12

b22 0.. 0

+ st
(n+l)
column

th
+- n row

th+2n row

Z(t) =

0

0

0

0

0

al

0

0

0

C 1 c 2 C3

a2n

0 1

C2n

0

Lb21

ist

column

1
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Here ul(t) and u 2 (t) are mutually orthogonal white noises that are

assumed to satisfy Pt-su(t) = Pt-su2(t) = 0 for all s > 0. Writing out

(18) we have the pair of stochastic differential equations

Dn +aDn-l

Dnr(t) = alr(t) + a2Dr(t) + ... + aDnr(t)
n2

+a R(t)+... +2na Dn- R (t) + b1u1(t) + b 12 (t)
n+l m 2n m 11 1( 1 2 u 2

DnR (t) = clr(t) + c2Dr(t) + ... + C Dn-lr(t)
m 1 2 n

=c Rn(t)+ ... +c Dn- R (t) + b (t) + b22 (t).
n+l m 2n m 2 1 ul 22u2

The white noise vector u(t) is assumed to have 2n x 2n "intensity" matrix V.

From the vector z(t) we can recover r(t) and Rm(t) according

to

r(t) = f z(t)
(lx2n)

R (t) = d z(t)

(1x2n)

where f = (1 0 . . . 0)

d = (0 0 . . 1 0 ... )
st

(n+l) column .

The solution of the vector stochastic differential equation

(18) can be written

AT t A(t+T-s)
z(t+T) = e z(t) + f e Bu(s)ds

n=0

for s > 0, we have

Sz(t+) = eAT
(19) Z(t+T) - z(t+T) = e z(t) .

t
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Thus, our formula for the linear least squares predictors of

R (t+T) and r(t+T) are
m

AT
(20) R (t+T) = d eATz(t)

m

r(t+T) = f eATz(t)

-I
Let A = PAP where A is a diagonal matrix of the eigenvalues of A and

the columns of P are the eigenvectors of A. Then (20) can be written

AT -l
R (t+T) = d Pe P z(t)

m

r(t+T) = f Pe P z(t)

These formulae are extensions of (9) and express the optimal T-ahead

predictor as a linear combination of (mean-square) derivatives of R (t)

and of r(t) of orders from zero to (n-l). For the univariate problem

analyzed in (9), the eigenvalues in A would equal the roots of the

characteristic polynomial, the a .'s, that appear in (9). Under the

rational expectations theory of the term structure, we want

n ^
R (t) = 1 f r(t+T)dT

m n 0

or

m1 AT
(21) R (t) = f[ eAd]z(t)

m ="m f 0s>0

From (20) we have that for s > 0

A(T+s)
(22) P R (t+T) = de z(t-s) .

But from (21) we also have

1 m eATd eA sPtsR(t+T) = f[f 0 edT]e z(t-s)

(23) = f[f m eA(T+S)dT]z(ts)
(23) f m 0
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Comparing (22) and (23), we see that the rational expectations theory of

the term structure imposes the following restrictions across rows of

A:

1 n eA(T+s) As
(24) fn -f 0

e  dT= de , s>0.

It is instructive to consider the following algorithm for

synthesizing an A matrix that satisfies the restriction (24). Given a

fixed nth row of A, the algorithm calculates the 2n
t h row that satisfies

(24).

th th
First, fill in the nthrow of A and set the 2n row equal to

a row of zeroes. Call this initial A matrix A0 .
A1

Second, form a matrix e by setting all of its rows except

the 2nth 0  nth
the 2nt  equal to the corresponding rows of e , and setting the2n

row according to

A n A(T+l)dT
d'e = f[ f e

A1  A1

A1Once e is available, A I can be calculated as Al = log e where

(25) log e A = (I- A )

n=1 n

Then iterate on the second step until the algorithm converges.

Convergence is assured if the eigenvalues of A have negative real parts.

Actually, there is no need to calculate the sum in (25).

Instead, assuming that the eigenvalues of eA are distinct, we can write

A
e as

A P -l

where the columns of P are the eigenvectors of e and A is a diagonal

matrix consisting of the eigenvalues of e . Then we have



- 17 -

log eA = P log A P-

where log A is the diagonal matrix consisting of natural logarithms of

the corresponding elements of A. This last equation follows from

noting that

oo n
A =il A

log e= (I-eA)
n=1 n

n=l no00

S 1 (I-A) np

n
n=1

n= 1

00oo

= P[ 1
n=1 n

(I-A)n]P-1

= P log A P

Similarly, there

sum. Instead, write

is no need to calculate eA via an infinite

A = PAP-1

where A are the eigenvalues of A and the columns of P are the eigenvectors

of A. Then

A A -1
e =Pe P .

This formula is useful in calculating the right-hand side of (21) as

1 n AT -1
n 0

fP[n jO eA d]P "

In particular, to use our algorithm we need to calculate
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fIn eA(T+l)d n (peA(+) -1 de dT = Pe P dT
0 0

= 1 [e i(n+) i -1

The Discrete-Time Model When the

Call Rate is Econometrically Endogenous

Since the solution of the stochastic differential equation (2)

is

AT t+T A(t+T-s)
z(t+T) = e z(t) + e Bu(s)ds

t

where E u(s) . z(s-v) = 0 for all v > 0, we have that

C (T) = Ez(t+T)z(t)' = eATEz(t)z(t)'

or

AT
(26) C (T) = e C (0) ,z z

so that the covariogram matrix Cx(T) obeys the systematic part of the

matrix differential equation (18) with initial condition given by

C (0). It can be shown that Cz(0) is the solution of the equation

(27) 0 = ACz(0) + Cz(0)A' + BVB'

where V is the "intensity" matrix of the vector white noise u(t). (See

Kwakernaak and Sivan, p. 104.)

Writing out C (T), we have thatz
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C (T) C (T)r r,Dr

C (T) C (T)
Dr,r Dr,Dr

c 2  (T)

D r,r

C rD 2 (T ) ... CrR(T) C (T) ..
2 rR r,DRr,D r

C Dn-1R(T)

C (T)
Dr,D R

C 2 (T)
D r,D R

CRr(T)

CDR,r (T)

CD n- R, ()

where C (T) = E[v(t+T)y(t)], and v(t) and y(t) are two scalar
v,yrocesses.

processes.

n-1, n-1 (T)

stocr,D Rtic
stochastic

The spectral density matrix of the vector z process is given

by

(w) = (jwl-A)-1 BVB' (-jwl-A')-1
z

a
The spectral densities of the sampled moving average processes R and

m
a

r t and their cross-spectrum are derived by folding the corresponding

elements of ' (w), after multiplying them by Isin (w/2)/(w/2) 2 to
z

account for the moving average. In particular, we have

Sw 2
sin w

SR(w) = F SR(w

2

w 2
sin 2

S r(w) = F Sr(w)r w rwj

S r(w) F SRr(w)

C (T) =
z

(28)
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where SRr(w) is the cross-spectrum of the moving average, sampled data

and SRr(w) is the cross-spectrum between the continuous processes.

Writing SRr(w) in polar form

ie(w)
SRr(w) = J(w)e

gives the phase lead 6(w) at each frequency. The parameter 0(w) is the

counterpart for this stochastic model of the theoretical phase stochastic

that Macaulay calculated for the deterministic model.

Estimation

Define the cross-spectral matrix

Sa(w) a (w)r rR
S (w) S (w)Rr( R

whose elements obey (24) and (28); also define the periodogram matrix

and

Ir(w.)2 r(w.)R (w.)
J J J

Iw.)* )1 2

j R(w.)r (w.) R(wj)2

T iw. t 2r .
where R(w.) = Ra Jw.

t= 1 mt j T

j=0,1, ... , T. Then estimates of the parameters of the continuous time

model (18) under the restrictions (24) can be obtained by minimizing

T-l

tr(I(wj)S(w.)-l) ,
j=0

which leads to estimates that are asymptotically equivalent to maximum

likelihood estimates (see Hannan ).
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Footnotes

1/
- Write sin w(t+m) - sin wt =

1 iw(t+m) e-iw(t+m) iwt -iwt
[e - e -e +e ]

1 iw(t+m) -iwt -iw(t+m) iwt
S[(e + e ) - (e + e )]

m miw iw(t M) -iw(t+ )
2i

-iwm -iw (t+2) iw (t+-)

-e (e + e )]
. m . m

1 2 2 m

2i [e - e ].2 cos[wt + mw]

m m
= 2 sin w . cos[wt + w]

2 2

= A cos[wt + w]

m
where A = 2 sin w .

2/ m
- To convert the phase lead of w - radians to time units, we

m
divide it by angular frequency w to get j. The term cos wt peaks at

m m
t=0, while the term A cos[wt + mw] peaks at t given by wt + -w = 0 or

m m m
t = m. Thus, the lead of m time units of cos wt over A cos(wt +m w).

2 T 2 2
3/
- A stochastic process x(t) is said to be mean-square continuous

if lim E{Ix(t+s) - x(t)12 1 = 0 for all t. A process is mean-square
S+0

continuous if its covariogram is continuous. A stochastic process x'(t)

is its mean-square derivative if

lim E{[x(t+s) - x(t) x'(t)] 2 } = 0

for all t. A sufficient condition for a stationary stochastic process

x(t) to have a mean-square derivative is for its covariogram c(T) to be

twice differentiable. A stationary process is n-times mean-square

differentiable if its covariogram is 2n times differentiable. See
Papoulis [ ]. In terms of its spectral density sx(w), a sufficient

condition for a process x to be n times mean-square differentiable is
o 2cn

' w2ns (w) <

4/ th
- If r(t) follows an n order linear stochastic differential

equation, then the discrete-time sampled processing r follows a mixed
th stn order autoregressive, (n-l)s t order moving average process. To see

this, use the method of partial fractions to write s (w) as
c.
3~

n c. n 2a. 2a.

r 2 2 2 2
j=1 (a + w) j= ( + w)

J J
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2

where ck = 2 2

II (a + w ) 2 2
j#k w2=-ak

The covariogram of r, being the inverse Fourier transform of S (w),

then obeys

C (T) = (2a e 3 ,T real.

j=1

Sampling Cr(T) at the integers gives

n k.

c (T) = ' = 0, + I, + 2, ...
r 2 j

j=1 1-A

-a. c. k.
where we have setA. = e J =_J

j ' 21 2j 1-x
J

Then the spectral density of the discrete time sampled process r t is

the Fourier transform of the sampled covariogram

n k.

S (z)= J
r -1j=1 (1-X.z)(1-X .z )

J J
-iw

where z = e

Putting the above over a common denominator gives

n -l
Y k. (1-Xkz)(1-Xkz )

S (z) = j=l k#j
r n

--I (1-Xjz)(1-X.z )
j=1

which is a rational spectral density, one characteristic of an (n-1) s t

order moving average, nth order autoregressive process.

-/The a's are only locally identifiable (see Phillips [ ]).

In order to achieve global identification, I have imposed the condition

that the imaginary parts of the a's are bounded by + H. This condition
is sufficient to achieve identification and has the effect of asserting
that peaks in the spectrum on [-H, H] aren't aliases of peaks at higher
frequencies.

- To indicate what our conventions imply about the sign of

phase, let yt = fh(T)x(t-T)dT and set x(t) = 2 cos wt = (e iWt+e -iWt).

We then have
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S = fh(T)[e i w (t - T) +fe - iw(t - T) ] d T

= eiw h()e -iwTd + -iwt h(T)e+iwTdT

iwt -iwt
= e h(w) + e h(-w)

where h(w) = fh(T)e-iWT. Write h(w) = Ih(w) ei,(w) then

y eiwtlhw ii(w) + e-iwtlh( e-ie(w)

= h(w)ei(wt+()) + e-i(wt+6(w))

= Ih(w) cos(wt + O(w)).

The variable yt peaks at wt + O(w) = 0 or t = -0(w)/w. A positive

phase statistic thus indicates that the output yt leads the input x t.

7/
- Again, we are imposing the condition that the imaginary

parts of the eigenvalues of A are between -H and +H in order to achieve

global identification.
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Figure 1 Plot of Estimated Spectrum of Call Rate
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Figure 2 Plot of Estimated Spectrum of Time Rate
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Figure 3 Plot of Phase
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