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Abstract

We consider an economy with perpetual youth and inelastic labor sup-
ply that grows endogenously. Consumers are subject to idiosyncratic capital
accumulation risk and markets are incomplete. The government purchases
consumption goods, makes transfers in the form of baby bonds, and it can
use consumption and wealth taxes. The wealth distribution is given in closed
form. When the intertemporal elasticity of substitution ε is equal to 1, the gov-
ernment can run a permanent primary deficit, up to a finite upper bound, if the
coefficient of relative risk aversion is high enough and the factor share of labor
is not too close to 1. This causes the risk-free rate r to be below the growth rate
g of the economy. But the government can implement Pareto improvements
when r − g does not exceed zero by enough. If ε 6= 1, then there may not
be an upper bound on the permanent primary deficits of the government. If
ε ∈ (0, 1), this happens when the economy is relatively unproductive, and then
taking deficits to be very large makes all consumers worse off. If ε ∈ (1,∞),
very large deficits are possible if the economy is sufficiently productive, and
then they imply unbounded Pareto improvements.1

1We thank seminar participants at USC, UCLA, and the Federal Reserve Bank of Minneapolis for useful
comments on earlier versions of this paper. An appendix with additional proofs is available upon request.
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1 Introduction

What are the effects on growth, inequality, and welfare, of persistent and possibly large
primary government deficits?

In this paper we present a stylized model of an endogenously growing economy in
which it is possible to give detailed analytical answers to this question. In our model,
consumers die randomly, as in Blanchard [1985] and Yaari [1965], and there is a constant
flow of newborn consumers. Consumers have access to their own individual capital ac-
cumulation technologies that are subject to idiosyncratic Brownian shocks. Life span risk
can be insured but otherwise markets are incomplete. Capital can be traded, but there are
no markets to hedge the risky returns that come with accumulating capital. Nobody can
earn the returns to holding capital without also being exposed to idiosyncratic risk.

The individual capital accumulation technologies are linear in capital. Consumption
is produced using a Cobb-Douglas technology that uses capital and labor. The economy
can be viewed as a special case of the two-sector economy of Uzawa [1965], but with a
capital producing sector that is extremely capital intensive (linear in capital only), and
a consumption sector that is relatively labor intensive. This implies a production pos-
sibility frontier for consumption and new capital that is strictly concave, resulting in an
endogenously determined price of capital that declines more rapidly the faster the econ-
omy grows.1 2

Consumers have Epstein and Zin [1989] preferences. This allows for enough risk aver-
sion, independently of the intertemporal elasticity of substitution ε ∈ (0,∞). This elas-
ticity, and especially the sign of 1 − ε, plays a central role in evaluating the effects of
government policy in this economy.3

The government issues nominal securities and prices are flexible. The government
can purchase consumption goods, make transfers to newborn consumers (baby bonds),
and impose linear taxes on consumption and wealth. Given stable government policies,
aggregates in this economy are always on a balanced growth path. The distribution of

1Rebelo [1991] already mentions a deterministic version of this model. Jones and Manuelli [1992] use
it to avoid stagnation in an overlapping generations economy. See Galor [1992] for a detailed analysis
of an Uzawa economy with overlapping generations. Luttmer [2012] shows that the competitive quality
ladder model of Boldrin and Levine [2010] converges to this economy as the ladder steps become small. As
Greenwood and Jovanovic [2001] emphasize, a falling price of capital goods relative to consumption goods
is a central feature of the data.

2As in Jones and Manuelli [2005], allocations would be efficient if markets were complete and consumers
were infinitely lived. See Atkeson and Burstein [2019] for a recent examination of tax policy in economies
in which externalities are important for growth.

3For divergent views on whether the empirical evidence points to ε ∈ (0, 1) or to ε ∈ (1,∞), see, respec-
tively, Yogo [2004] and Schorfheide, Song, and Yaron [2018].
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wealth at a given point in time can be anything, but it will eventually converge to a sta-
tionary distribution. This stationary distribution is a double Pareto distribution. Taxes
and transfers, and the factor share of labor are important determinants of how thick the
tail of the wealth distribution will be.4

The case of a unit intertemporal elasticity of substitution is quite special, but also ex-
tremely tractable. With a government that runs a balanced budget and makes no trans-
fers, our incomplete markets economy can have pure bubble assets (no dividends, strictly
positive prices) if and only if there is enough idiosyncratic risk and the labor share is less
than the ratio of the death rate over the sum of the death rate and the subjective discount
rate. Even if there is a lot of idiosyncratic risk, this rules out pure bubble assets if con-
sumers are very impatient or very long-lived. Bubble assets can emerge to improve risk
sharing, but only if the value of the safe claims to labor is not too high already.5 In a pure
bubble equilibrium, r−g is equal to zero. When a pure bubble equilibrium is possible, the
economy will also have a no-bubble equilibrium with r−g < 0. Conversely, r−g < 0 in a
no-bubble equilibrium implies the existence of a pure bubble equilibrium. Bubble assets
can include not only government securities but also other useless pieces of paper. As in
Kareken and Wallace [1981], the relative price of competing bubbles is indeterminate.6

Starting from a balanced budget policy that allows for a bubble equilibrium, the gov-
ernment can, within limits, permanently lower consumption taxes or increase transfers
to newborn consumers. If the intended deficits are not too large, we show that there is
a steady state equilibrium in which the government can simply cover these deficits by
selling more nominal securities, forever. A steady state requires a stable real value of
government securities relative to the size of the economy, and this forces r − g < 0. An
unforeseen change in government policy can cause a one-time jump in the price level.
Other than that, primary deficits have nothing to do with inflation in our economy.

How large permanent primary deficits can be depends very much on how these deficits
are used. For reasonable parameters, the upper bounds on primary deficits will be on the

4Toda [2014] uses a standard AK economy, without a fixed factor, and with incomplete markets and
Epstein-Zin preferences to generate a wealth distribution that is double Pareto. Benhabib and Bisin [2010]
developed a closely related model of the distribution of wealth that relies on overlapping generations and
perpetual youth.

5Aoki, Nakajima, and Nikolov [2014] show the possibility of a bubble asset in an AK economy with
idiosyncratic risk but no fixed factor. As in their paper, occasionally binding borrowing constraints play no
role in our economy, unlike in Harrison and Kreps [1978] or Santos and Woodford [1997]. See Miao [2014]
for a more recent discussion of models of asset price bubbles.

6If there is a fixed supply of private sector long-lived assets that deliver no dividends, then the value of
these assets will shrink at the rate r − g < 0 relative to aggregate consumption. And they do not restrict
government policy. But this presumes there is no private sector entity that issues more of these assets, just
like the government does. Throughout this paper, we will rule this out by assumption and abstract from
private-sector long-lived assets altogether.
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order of a few percent of household consumption expenditures if the government only
cuts taxes or only increases transfers. But if the government uses the right combination
of primary deficits and consumption taxes to fund baby bonds, then the primary deficit
of the government has an upper bound that approaches 100% of household consumption
expenditures when idiosyncratic risk or risk aversion becomes large. This requires large
consumption taxes and even larger transfers of baby bonds. Our assumption that trans-
fers are in the form of baby bonds also matters a great deal. A government that instead
makes transfers in the form of a universal basic income again faces a tight constraint on
the size of its permanent primary deficits. Such a policy reduces the demand for safe
government securities, which in turn lowers the upper bound on how large deficits can
be. The government is a large agent whose policies affect the economy not just via the
size of its deficits. There is no notion of “fiscal space” that is independent of how the
government uses that space.

We show that increases in baby bonds financed by higher consumption taxes are al-
ways good for long-run growth when the government runs a primary surplus. This is al-
ready true in a complete markets economy with perpetual youth. Holding taxes fixed and
simply increasing transfers of baby bonds also increases growth, even when the govern-
ment begins to run a deficit, provided that the equilibrium changes continuously when
the primary surplus of the government switches to a deficit. These growth effects are
clearly beneficial for generations that will be born far enough into the future. But the
associated declines in current aggregate consumption and increases in risk exposure are
sufficiently painful that all consumers already alive are hurt by increased transfers of baby
bonds. On the other hand, any policy that reduces growth can never be a Pareto improve-
ment because it hurts generations that will be born sufficiently far into the future. If the
government can only change its policy on transfers, then there is no way to change policy
and make everyone better off.

But if the government can vary both its transfers of baby bonds and consumption
taxes, then the government can separately target both the aggregate growth rate of the
economy and the amount of idiosyncratic risk consumers are exposed to. In that case,
we prove that an equilibrium with r − g < 0 implies the existence of alternative policies
that lead to allocations that Pareto dominate the equilibrium allocation with r− g < 0. So
permanent primary deficits can never be efficient when the government has access to both
baby bonds and consumption taxes. More strongly, the fact that markets are incomplete
actually implies that there will still exist Pareto improving policies if r − g > 0 and close
enough to zero.7

7Others have emphasized that, in certain settings, government policies that lead to r − g < 0 can be
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Using a combination of very large transfers and even larger consumption taxes, the
government can actually implement any feasible aggregate growth rate and at the same
time eliminate almost all idiosyncratic risk and achieve allocations that are approximately
Pareto efficient. Such policies are favored by consumers who are already alive. But even
though the current generation of newborn consumers will be the first recipients of these
large transfers, they strictly prefer policies that do not eliminate almost all idiosyncratic
risk. When the equilibrium exposure to idiosyncratic risk is already small, the direct ben-
efits of further reductions in this exposure are of second order. At the same time, reduc-
tions in idiosyncratic risk exposure do increase the risk-free rate, linearly. This increases
individual consumption growth for everyone, without changing aggregate consumption
or aggregate consumption growth. As a matter of accounting, this requires a reduction
in newborn consumption relative to aggregate consumption, which hurts newborn con-
sumers.

This intergenerational conflict over the desirability of eliminating all idiosyncratic risk
disappears when the government can also use a wealth tax. Together with transfers of
baby bonds, this instrument allows the government to reduce individual consumption
growth rates without distorting the aggregate growth rate of the economy. This allows
the government to increase newborn wealth relative to aggregate wealth, independently
of the aggregate growth rate and the equilibrium exposure to idiosyncratic risk. All gen-
erations then prefer policies that approximately eliminate all exposure to idiosyncratic
risk. Wealth taxes are still inconsistent with Pareto efficiency. But because they raise new-
born wealth relative to aggregate wealth, current and future newborn generations prefer
strictly positive wealth taxes.

The ε = 1 economy is very well behaved. A key reason is that the homogeneous
of degree 1 version of utility is always finite and positive, no matter how productive or
unproductive the individual capital accumulation technologies may be. This is very much
not the case when ε differs from 1.

If ε ∈ (0, 1) instead, and the capital accumulation technologies are not productive
enough, then a central planner can only deliver zero utility to everyone but a zero mea-
sure of consumers. Above a certain productivity threshold, the economy will have a
complete markets equilibrium. But with no government securities outstanding, the fact
that individual consumption trajectories will have to be risky means that the economy
still does not have an incomplete markets equilibrium. Once productivity rises above an-

improved upon. Abel and Panageas [2022] and Hellwig [2021] do so in the context of two-period OLG
economies with aggregate risk, and Brumm, Feng, Kotlikoff, and Kubler [2022] and Kocherlakota [2022] do
so in the context of idiosyncratic risk and incomplete markets. In the ε = 1 setting we describe, r − g = 0 is
still a sign of Pareto inefficiency.
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other threshold, the economy does also have an incomplete markets equilibrium. In be-
tween these two productivity thresholds, the economy has a pure bubble equilibrium, in
which government securities trade at a positive price even though its primary surpluses
are always zero. Perhaps more strikingly, precisely in between these two productivity
thresholds, holding fixed taxes, there is no bound on how large government transfers can
be. But we show that very large transfers are the worst possible policy a government can
choose. It drives everyone’s utility back down to zero.

On the other hand, if ε ∈ (1,∞), then a central planner can increase everyone’s utility
without bound if the productivity of the capital accumulation technologies is above a cer-
tain threshold. In this region, the government can ensure the existence of a complete mar-
kets equilibrium by choosing a large enough tax on wealth. By choosing this wealth tax
just large enough, the government can increase utilities without bound. But even without
wealth taxes, an economy that is too productive to have a complete markets equilibrium
will still have an incomplete markets equilibrium if its productivity does not rise above
another threshold. The idiosyncratic risk to which consumers are exposed is enough to
keep utility finite. In between these two threshold, we show that the government can in-
crease transfers without bound. And we show that these large transfers provide another
way in which the government can increase utilities without bound, one that does not rely
on any form of taxation. We show, by example, that when unbounded utilities are possi-
ble, increasing transfers to newborn consumers starting from a balanced budget baseline
can actually be an immediate Pareto improvement, not just when transfers become large.

To dissect this unbounded utility result, abstract, for simplicity, from government
purchases and any form of taxation, so that household consumption expenditures and
consumption are the same. When transfers become large relative to consumption, gov-
ernment deficits become large relative consumption, and it must be that for any given
r − g < 0 the steady state market value of government securities also becomes large
relative to consumption. Since the portfolio share of government securities is bounded
above by 1, this means that aggregate wealth must also become large relative to aggregate
consumption. That is, the consumption-wealth ratio must go to zero. The consumption-
wealth ratio is a budget share, and for CES preferences with an elasticity ε ∈ (1,∞), a
budget share that converges to zero means utility going to infinity relative to a quantity
consumed. As transfers become large, we show that the growth rate of the economy con-
verges to its technological upper bound, as most capital is used to produce new capital
rather than consumption. The marginal product of capital in the consumption sector, and
therefore the price of capital, becomes very high. This stabilizes the market value of the
aggregate capital stock relative to the value of government securities. Risk-adjusted in-
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dividual consumption growth converges to the upper bound of the range where utility
is finite. These two limiting conditions —aggregate growth at its technological upper
bound, and individual risk-adjusted consumption growth at the boundary where utility
explodes— determine a strictly negative limiting value of r − g and a limiting portfolio
share of capital that is in (0, 1). In sharp contrast to our result for the ε = 1 economy, nega-
tive r−g in this economy is entirely consistent with government policies that approximate
the best they can be.

The unbounded utility result is intimately related to our perpetual youth assumption.
Taken literally, the only possible interpretation is that households are dynasties of altru-
istically linked consumers, as in Weil [1989]. Implicitly, we assume dynasties die and
new dynasties are born when altruistic links break down. The large-transfer policy that
leads to unbounded utilities then means that new dynastic households must receive large
transfers.8 We also consider an economy in which households cannot last beyond a defi-
nite age T . We prove that it is possible to construct fiscal policies for the finite-T economy
that approximate the utilities in the perpetual youth economy as T becomes large.

Related Literature Going back to Samuelson [1958] and Diamond [1965], there is, of
course, a vast literature on economies with real interest rates that are below their growth
rates. Blanchard [2019] and the facts of the US economy, and of other advanced economies
as well, have triggered a renewed interest in the topic.9 The following discussion focuses
on the most closely related work that emphasizes idiosyncratic risk and market incom-
pleteness.

Brunnermeier, Merkel and Sannikov [2022] and Reis [2021] both describe AK economies
with infinitely-lived consumers, Brownian uncertainty, and incomplete markets, in which
the rates of return on safe government securities is low.10 But there is no fixed factor of
production in their models. In our economy, labor is a fixed factor and consumers can
borrow against their labor income. This creates a private-sector safe asset that makes
r− g < 0 impossible when consumers are infinitely lived. Some type of overlapping gen-
erations structure is essential to make unbacked government securities trade at a positive
price. Our baseline choice is a model of perpetual youth, but we show that transfers not

8Unbounded utilities are also possible when the government sets transfers to zero for everyone and
generates large deficits by paying large consumption subsidies.

9For example, Barro [2021] and Mehrotra and Sergeyev [2021] obtain r − g < 0 in representative agent
economies with aggregate risk. In Abel and Panageas [2022], Blanchard and Weil [2001], Brumm, Feng,
Kotlikoff, and Kubler [2021] and Hellwig [2021] there is aggregate risk that cannot be shared between over-
lapping generations of two-period lived consumers.

10In addition, Brunnermeier, Merkel and Sannikov [2022] have aggregate risk, and Reis [2021] has entre-
preneurs who cannot borrow more than certain fraction of their returns to capital.
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paid for by taxes can also be Pareto improving when there are overlapping generations
of consumers with bounded life spans. In Brunnermeier, Merkel and Sannikov [2022],
the price of capital is endogenous because new capital is produced from existing capital
and final output, using a constant returns technology that exhibits diminishing returns
to these two inputs. This is a classic form of adjustment cost that creates protracted tran-
sitions when policy changes. As a result, making explicit welfare statements is beyond
what is analytically tractable. In our economy, the price of capital is endogenous because
its marginal product in the consumption sector is decreasing in the amount of capital
used to produce consumption. Similar to an AK economy with a linear consumption
sector, this means that the aggregate economy (though not the underlying wealth distrib-
utions) will switch to a new balanced growth path instantaneously. This prevents us from
analyzing aggregate transitions, but it does allow us to describe the effects of permanent
changes in fiscal parameters explicitly. The welfare consequences of a policy change can
be summarized by only three statistics: the utility of the representative consumer already
alive at the time of the policy change, the utility of the new generation born at the time of
the policy change, and the effect of the policy change on long-run growth. In particular,
fiscal policies that hurt growth can never be Pareto improving in our economy. Another
important difference with Brunnermeier, Merkel and Sannikov [2022] and Reis [2021] is
that we do not restrict attention to consumer preferences with a unit intertemporal elastic-
ity of substitution. This is essential for making welfare improving large deficits a robust
possibility.

Incomplete markets also play an important role in the Aiyagari-Bewley-Huggett econ-
omy with a neoclassical technology described by Aguiar, Amador and Arellano [2021].
They characterize the types of fiscal policies for the government that can result in Pareto
improvements. In their economy, equilibrium allocations can be dynamically inefficient.
This is ruled out by our AK-style Uzawa technology. Introducing idiosyncratic labor in-
come risk in our environment reduces the private-sector supply of safe assets and is likely
to increase the size of the permanent primary deficits that are consistent with equilibrium.

Kocherlakota [2022] considers an Aiyagari-Bewley-Huggett economy in which con-
sumers face a near-zero probability of a highly adverse outcome. Due to a precaution-
ary savings motive strengthened by this tail risk, there is a strong demand for risk-free
government bonds. There is an upper bound on the value of government debt in this
economy, and that upper bound is attained in a steady state with r − g = 0. As the
probability of the state with the highly adverse outcome goes to zero and the marginal
utility of consumption in this disaster state goes to infinity, this upper bound also goes to
infinity. In our economy, the uninsurable idiosyncratic investment risk faced by house-
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holds grows without bound over long horizons. If dynastic households can survive with
positive probability beyond any given age, then there is, in any sufficiently productive
economy, no limit on how much a government can borrow.

Outline We introduce the economy with incomplete markets in Section 2. In Section 3,
as a benchmark, we describe the stationary complete markets allocations for the underly-
ing economy. Section 4 shows when unbounded deficits are feasible, and when they are
desirable. We specialize to a unit elasticity of substitution in Section 5 and provide explicit
conditions under which the government can actually run a permanent primary deficit. In
Section 6 we prove the utility approximation result for finitely-lived households. Section
7 concludes with important caveats.

2 The Economy

We only consider balanced growth paths of our economy.

2.1 Demographics and Preferences

There is a flow δ > 0 of newborn consumers. At all times, consumers supply L units of
labor inelastically. They die randomly at the rate δ. The population is assumed to be in a
steady state, so that there is a unit measure of consumers. Given consumption flows Cj,t
and information generated by a Brownian motion Zj,t, the utility process Uj,t of a typical
consumer j evolves according to

dUj,t = Uj,t
(
AtUjdt+ StU ′jdZj,t

)
where AtUj and StUj satisfy

(ρ+ δ)U
1−1/ε
j,t = (ρ+ δ)C

1−1/ε
j,t +

(
1− 1

ε

)
U
1−1/ε
j,t

(
AtUj −

1

2
ξ‖StUj‖2

)
.

This is a continuous-time version of Epstein and Zin [1989] that makes utility homo-
geneous of degree 1 in consumption (see Duffie and Epstein [1992]). The parameter
ε ∈ (0,∞) is the intertemporal elasticity of substitution, and ξ is the coefficient of rela-
tive risk aversion. In the standard additively separable case, ε = 1/ξ. Our results apply
to this special case, but, following Bansal and Yaron [2004], we are especially interested
in scenarios with both ξ significantly above 1 and with ε ∈ (1,∞).
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2.2 Idiosyncratic Capital Accumulation

There is a single type of capital in this economy, but consumers can only accumulate this
capital subject to idiosyncratic shocks. The capital stock of a consumer j who holds Kj,t

units of capital, evolves according to

dKj,t = (µKj,t −Xj,t) dt+ ςKj,tdZj,t + dIj,t,

where Xj,t ≥ 0 is a flow of capital used for consumption, Ij,t represents cumulative pur-
chases of capital, and Zj,t is a standard Brownian motion that is unrelated across con-
sumers. The parameters µ and ς > 0 are common. A central feature of our economy is
that there are no financial markets contingent on the Zj,t.

2.3 The Aggregate Technology

The technology in the consumption sector is Cobb-Douglas,

Yt = X1−α
t Lα,

where L > 0 is inelastically supplied labor, and Xt ≥ 0 is the flow of capital used up
during the process of producing consumption. Throughout, it is assumed that α ∈ (0, 1).11

Because idiosyncratic shocks average out, the aggregate capital stock evolves accord-
ing to

dKt = µKtdt−Xtdt.

The price of capital in units of consumption is qt. SinceXt depletes capital at a one-for-one
rate, this is also the factor price of capital faced by producers of consumption. The factor
price of labor is wt in units of consumption. Profit maximization in the consumption
sector then implies [

qtXt

wtL

]
=

[
1− α
α

]
Yt.

A closely related interpretation is thatXt/µ ∈ [0, Kt] is capital that is employed to produce
consumption rather than new capital. This makes this economy a special case of Uzawa
[1965], with a linear technology in the capital accumulation sector. We will refer to this as
the Uzawa-AK technology.

11Any economy will have to have land, possibly another fixed factor. This is not innocuous, because a
claim to labor is not a claim to an infinitely-lived asset, and land could be (Muller and Woodford [1988]).
We assume there is an unbounded supply of unimproved land and interpret capital as including improved
land.
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2.4 Balanced Growth

Suppose Xt/Kt = x ∈ (0,∞). Then the aggregate capital stock grows at the rate µ − x,
and therefore Yt grows at the rate

g = (1− α) (µ− x) . (1)

This relation describes an immediate trade-off between the level and the growth rate of
consumption. Since Yt grows at the rate (1−α)(µ− x), and Xt grows at the rate µ− x, the
fact that factor shares are constant implies that (dqt/dt) /qt = µq is given by µq = −α(µ−x),
and therefore (1 − α)µq = −αg. The technology of this economy says that a high growth
rate must go together with a rapidly declining price of capital.12 This is the same as saying
that the aggregate return on capital is given by µ + µq = (1 − α)µ + αx. Using (1), yet
another way to put this is

x = µ+ µq − g. (2)

Notice that the dividend-price ratio for the aggregate capital stock is simply (qtXt)/(qtKt) =

x. Therefore, in Gordon-growth fashion, x = µ+ µq − g can be interpreted as the effective
discount rate for the dividends produced by the aggregate capital stock.

Let r be the risk-free rate in this economy. It will be useful to note that the right-hand
side of (2) can be written as the sum of the excess return µ + µq − r on capital and the
effective discount rate r − g for risk-free dividends that grow at the same rate g as Yt.

2.5 Government

Household consumption at time t is Ct, and wealth is Wt. The government consumes Gt.
The aggregate resource constraint isCt+Gt = Yt. The target for government consumption
is Gt = γCt. The government also targets a consumption tax τ ∈ (−1,∞) and a wealth tax
ω ∈ (−∞,∞) . This implies government revenues equal to Tt = τCt + ωWt. In addition,
the government targets aggregate transfers to newborn consumers equal to σYt. We only
consider steady state equilibria that are consistent with the fiscal target parameters γ, τ ,
σ, and ω. We do not specify government policy for off-the-equilibrium prices that are not
consistent with these targets.

12This also means that GDP grows faster than the value of aggregate output in units of consumption.
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2.5.1 The Primary Surplus or Deficit

Including the consumption tax, household consumption expenditures are Et = (1 + τ)Ct.
The primary surplus of the government relative to household consumption expenditures
is therefore given by the surplus ratio

St =
Tt −Gt − σYt

Et
= 1 +

ω

Et/Wt

− (1 + γ)(1 + σ)

1 + τ
. (3)

In a steady state, aggregate consumption and wealth grow at the rate g. Write S for
the steady state surplus ratio, and [Ct, Gt, Yt, Et,Wt] = [C,G, Y,E,W ] egt for the balanced
growth path of the consumption sector.

2.5.2 Government Issued Deposits

The government runs a bank that issues deposits. At time t = 0, the supply of these de-
posits is D0 > 0. Purchases of consumption goods are paid for and basic income transfers
are made by issuing more deposits. Taxes are used to retire deposits. The government
also pays interest on these deposits, by issuing more deposits. For simplicity, take the
nominal interest rate to be constant at some real number i ≥ 0. The price of consumption
in units of government deposits is Pt.

If the 1/Pt are positive, then the supply Dt of government deposits evolves according
to

dDt = iDtdt+ Pt(Gt + σYt − Tt)dt,

starting from D0 > 0. Since government deposits are risk-free, it must be that i = r +

(dPt/dt)/Pt. This implies

d

(
Dt

PtEt

)
= (r − g)

(
Dt

PtEt

)
dt− Stdt. (4)

In a steady state, the surplus ratio (3) will be constant, and so Dt/(PtEt) must be constant.
Since Et = Eegt, this means that Dt/Pt = (D/P )egt, where [D,P ] = [D0, P0]. Since the
price level grows at the rate i− r, this gives Dt = De(i−(r−g))t.

Government policy is never to lend to the public. The equilibrium value of govern-
ment deposits can therefore be zero or positive, but not negative. The steady state value
of D/(PE) must therefore satisfy

(r − g)× D

PE
= 1 +

ω

E/W
− (1 + γ)(1 + σ)

1 + τ
,

D

PE
≥ 0. (5)
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If the government’s budget is balanced, then (5) will hold if r− g = 0 and also if r− g 6= 0

and D/(PE) = 0. Our assumption that D0 > 0 means that D/(PE) = 0 forces 1/P = 0.
The fiscal targets γ, τ , σ and ω, together with a government policy not to lend to the
public, force r−g > 0 if these fiscal targets imply a primary surplus, and r−g < 0 if these
fiscal targets imply a primary deficit.

2.6 Aggregate Wealth and Portfolio Shares

Consumers can pledge assets held at their time of death in exchange for an annuity in-
come, as in Yaari [1965] and Blanchard [1985]. Conditional on survival, their labor in-
comes wtL grow at the same rate g as aggregate consumption. At birth, date-t newborn
consumers sell their future labor income for wtL/(δ + r− g) and buy capital and risk-free
securities.13 In any equilibrium, this present value must be well defined and finite. As
long as α ∈ (0, 1), this requires δ + r− g > 0. Aggregate household wealth at any point in
time can then be defined as

Wt = qtKt +
wtL

δ + r − g +
Dt

Pt
.

As already anticipated, the steady state conditions imply that Wt = Wegt.
Let ψ = qK/W be the steady state portfolio share of capital. Given X = xK, qX =

(1− α)Y , and Yt/Et = (1 + γ)/(1 + τ), this implies

ψ =
1− α
x

1 + γ

1 + τ

E

W
, (6)

where x is given by (2). This can be read as saying that wealth held in the form of capital,
ψW , is equal to the present value of the capital income flows (1 − α)Y egt, discounted at
the effective rate x = µ+µq−g. UsingwtL = αYt and Yt/Et = (1+γ)/(1+τ), the definition
of wealth then implies a risk-free portfolio share

1− ψ =

(
α

δ + r − g
1 + γ

1 + τ
+

D

PE

)
E

W
. (7)

One could imagine an economy in which consumers follow inelastic decision rules de-
fined simply by taking E/W and ψ as parameters. Then one can view (6) and (7) as

13On a given equilibrium path, this is equivalent to the assumption that consumers can only issue real
debt, subject to a present value borrowing constraint. In contrast, the government issues deposits, and this
enables it to effectively run a Ponzi scheme when r − g < 0. One possible interpretation is that the private
sector faces legal restrictions against such Ponzi schemes.
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market clearing conditions for capital and risk-free assets, respectively. Together with the
steady state condition (5) for government deposits, these conditions must be solved for x,
r− g, and D/(PE). The growth rate of the economy then follows from g = (1−α)(µ−x).

2.7 Consumer Decision Rules and Utility

With the economy on a balanced growth path, consumers face constant expected rates of
return. Although shocks are idiosyncratic, everyone faces the same return parameters.14

Preferences are homothetic, and so we can take E/W and ψ to also represent the deci-
sion rules of individual consumers. Conditional on survival, the average growth rate of
individual consumption is given by

gy = r + δ + ψ(µ+ µq − r)−
(
ω +

E

W

)
. (8)

Including annuity payments, consumers face expected returns r + δ and µ + µq + δ, but
the wealth tax lowers the rate at which wealth grows by ω. The Epstein-Zin preferences
we have adopted imply

E

W
= ρ+ δ −

(
1− 1

ε

)(
gy −

1

2
ξς2ψ2

)
(9)

ψ =
µ+ µq − r

ξς2
. (10)

Using (10) to eliminate µ + µq − r from (8) gives gy = r + δ + ξς2ψ2 − (ω + E/W ), and
plugging this into (9) gives E/W in terms of r and ψ. The decision rules (8)-(10) are well
defined if and only if E/W is strictly positive. The resulting utility for a consumer j with
wealth Wj,t is determined by

Uj,t = Cj,t

(
E/W

ρ+ δ

)−1/(1−1/ε)
, Cj,t =

Wj,t

1 + τ

E

W
. (11)

So Uj,t is linear in Wj,t, with a slope that scales with (E/W )1/(1−ε). Holding fixed Wj,t, the
partial effects on utility of an increase in the risk-free rate r and of an increase in the risk
premium µ+ µq − r are both positive.

The expression (9) for E/W highlights how the consumption-wealth ratio of a con-
sumer whose consumption process follows a geometric Brownian motion depends on

14As in Angeletos [2006], the combination of a tradable source of labor income together with an idiosyn-
cratic capital accumulation technology leads to a Merton problem.
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its geometric drift parameter gy, its diffusion coefficient ςψ, and the risk-aversion coeffi-
cient ξ. What matters is the risk-adjusted growth rate gy − 1

2
ξς2ψ2. When ε ∈ (0, 1), the

consumption-wealth ratio E/W is positive if and only if this risk-adjusted growth rate is
not too low. When ε ∈ (1,∞), it is positive if and only if the risk-adjusted growth rate is
not too high.

2.8 Equilibrium

Balanced growth paths for this economy can be constructed by solving the market clear-
ing conditions (6)-(7), taking into account the decision rules (8)-(10), as well as (1)-(2) and
(5). Note that (2) and (10) immediately imply x = ξς2ψ + r − g, and this can be used
to eliminate x from (6). That leaves four equilibrium conditions, (5)-(9), that have to be
solved for r − g, ψ, E/W , and D/(PE).

Observe that r− g and ψ pin down E/W via (8)-(10), and then (7) can be used to infer
D/(PE). So r − g and ψ are sufficient to identify a particular equilibrium.

2.8.1 Unforeseen and Permanent Policy Changes

As in AK economies without a fixed factor, our economy will have a balanced growth
path from the start, and following unforeseen and permanent changes in government pol-
icy. Our assumption that newborn consumers can sell their labor income at birth means
that all consumers alive at a point in time use the same portfolio shares for risky and
risk-free securities. To predict what happens following an unforeseen change in policy,
it is easiest to assume that everyone alive holds physical capital subject to idiosyncratic
shocks, as well as shares in a risk-free mutual fund that is backed by labor income and
government securities. The value of this mutual fund will typically jump following an un-
foreseen change in government policy.15 For all consumers already alive, utilities change
one for one with the utility Ut of a consumer whose wealth is equal to aggregate wealth.
Importantly, however, all future generations hold unbalanced portfolios, consisting only
of claims to their future labor income. The utility of a generation born T ≥ 0 units of time
into the future can be written as Uy,tegT . The welfare consequences of an unforeseen and
permanent policy change at time t can be accounted for using Ut, Uy,t, and g.

15Because of our assumption thatD0 > 0, the mutual fund of risk-free securities will always hold govern-
ment securities, even if 1/P = 0. Starting from a 1/P = 0 scenario, the wealth effects of an unforeseen policy
change (or an unforeseen jump between different equilibria) that suddenly gives government securities a
positive price will then accrue to all consumers alive in proportion to their wealth.
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2.8.2 The Dynamics of Consumption, Wealth and Utility

Conditional on survival, the individual wealth of consumer j evolves according to

dWj,t = Wj,t (gydt+ ψςdZj,t) ,

The wealth distribution is the determined by how gy differs from the growth rate g of
aggregate consumption, and by ψ. Since an unforeseen change in government policy does
not redistribute wealth among consumers alive at the time of the change, the distribution
of wealth will only adjust to the new policy over time. As pointed out by Gabaix, Lasry,
Lions and Moll [2017], this may take a long time.

2.8.3 Aggregate Versus Individual Consumption Growth

The distribution of wealth is driven by idiosyncratic capital accumulation shocks, and
by the discrepancy between the drift gy of individual consumption and the aggregate
consumption growth rate g. Newborn consumers start with wealth Wy,t = Wye

gt, where
Wy/W satisfies

σ × 1 + γ

1 + τ

E

W
= δ

(
Wy

W
− α

δ + r − g
1 + γ

1 + τ

E

W

)
. (12)

The left-hand side gives aggregate transfers σY relative to aggregate wealth, using the fact
that Y/E = (1 + γ)/(1 + τ). The right-hand side accounts for the fact that these transfers
add an instantaneous jump σY/δ to the initial wealth of every one of these consumers.
Observe that (11) and (12) allow one to relate the utility of newborn consumers to the
utility of the average consumer.

As a matter of accounting, the ratio Wy/W pins down the relation between aggregate
consumption and the drift of individual consumption,

g = gy − δ
(

1− Wy

W

)
. (13)

The term gy is the consumption growth rate of surviving consumers. The consump-
tion of consumers who randomly die scales with W , while the consumption of newborn
consumers is proportional to Wy. Since Wy > 0, the accounting equation (13) implies
gy < g+ δ. The consumption growth rate of surviving consumers can, on average, exceed
the aggregate growth rate of consumption, but by no more than δ.

It should be emphasized that the accounting relation (13) is already implied by (12)
and the equilibrium conditions (1)-(2), (5), (6)-(7), and (8)-(10). This is a consequence of
Walras’ law.
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2.8.4 The Stationary Wealth Distribution

By Ito’s lemma, we have

d ln

(
Wj,t+a

Wy,t+a

)
=

(
gy −

(
g +

1

2
ψ2ς2

))
da+ ψςdZj,t+a.

Taking logs reduces the drift gy by the Ito term ψ2ς2/2, and de-trending with newborn
wealth reduces the drift by g. In a cohort of age a, the distribution of wealth relative
to current newborn wealth among surviving consumers is therefore normal with mean(
gy −

(
g + 1

2
ψ2ς2

))
a and variance ψ2ς2a. Random death implies that the age distribution

is exponential with a density δe−δa. Combining these two distributions gives the distribu-
tion of wealth relative to newborn wealth. As is well known, this implies a double Pareto
distribution.16

Proposition 1 The stationary distribution of wealth relative to newborn wealth, uj,t = Wj,t/Wy,t,
has a density given by

f(u) =
min

{
u−(1+ζ−), u−(1+ζ+)

}
1
ζ−

+ 1
ζ+

, u ∈ (0,∞),

where

ζ± = − d

s2
±

√(
d

s2

)2
+

δ

s2/2
, d = gy −

(
g +

1

2
ψ2ς2

)
, s = ψς.

This satisfies ζ− < 0 < ζ+ and ζ+ > 1.

The fact that gy < g + δ implies that d + 1
2
s2 < δ, and therefore ζ+ > 1. The construction

of a balanced growth path therefore guarantees that the distribution of wealth has a finite
mean. The closer gy is to its upper bound g + δ, the closer is the tail index ζ+ to 1, which
is Zipf’s law. In turn, this happens when Wy/W is particularly small.17

2.9 Baby Bonds versus a Universal Basic Income

As in settings in which classical Ricardian results apply, there is, in our incomplete mar-
kets economy, a certain arbitrariness to how government transfers to consumers are im-
plemented.

16Because wealth is de-trended by newborn wealth, this proposition generalizes easily to a setting with
Brownian aggregate shocks to the technology for accumulating capital.

17If ε = 1, ρ ↓ 0, and ξς2 ↓ 0, and there is no government, then gy = g + x and ψ = x/δ =
√
1− α, from

(19) below. The resulting wealth distribution is Pareto with a tail index ζ+ = δ/(gy − g) = 1/
√
1− α. At

α = 5/9, this gives ζ+ = 1.5, in line with US data (see Aoki and Nirei [2017]).
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To illustrate, suppose that the government not only makes one-time transfers to new-
born consumers but also pays everyone a universal basic income (UBI). Suppose the ag-
gregate UBI transfers are θYt. The primary surplus of the government is then given by

Tt −Gt − (σ + θ)Yt
Et

= 1 +
ω

Et/Wt

− (1 + γ)(1 + σ + θ)

1 + τ
,

and this appears in the steady state condition (5) for D/(PE). Consumers now receive a
universal basic income θYt along with their labor income wtL = αYt. To account for this
additional income, the labor share parameter α in (7) and (12) (but not in (6)) must be
replaced by α+ θ. The remaining equilibrium conditions for r − g, ψ, E/W , and D/(PE)

are unaffected.
Proposition 2 shows that any policy with a UBI component can be transformed into a

policy with only baby bonds, with no effect on the consumption allocation, of anyone, at
any time.

Proposition 2 Suppose the equilibrium for a policy (θ, σ) is given by ψ and r − g. Then ψ and
r − g are also an equilibrium for the policy (θ′, σ′) defined by

θ′ = 0, σ′ = σ + δ × θ

δ + r − g .

Given an unforeseen one-time change in policy from (θ, σ) to (θ′, σ′), the price level is also not
affected if the government makes an instantaneous transfer of deposits equal to

D′ −D
P

=
θY

δ + r − g

to consumers alive at the time of the policy change.

This policy is constructed to leave newborn consumers with the same amount of wealth
when the universal basic income is abolished and replaced by baby bonds. And con-
sumers already alive are compensated for the universal basic income they lose as a result
of the new policy. This instantaneous transfer causes a jump D′ −D > 0 in the supply of
government deposits. Observe that the definition of σ′ implies that the primary surplus
of the government changes by the amount

−(S ′ − S)Et = −σ′Yt + (σ + θ)Yt = (r − g)× θYt
δ + r − g = (r − g)× D′ −D

P
.

If r − g > 0, then this implies S ′ < S ≤ 1, and an increase in the primary surplus of
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the government. But if r − g < 0, then this implies 1 ≤ S < S ′, and an increase in the
primary deficit of the government. In both cases, this implies an increase in the steady
state supply of government deposits. The instantaneous transfer of deposits to consumers
already alive exactly matches this steady state increase, without a change in the price
level. If consumers already alive were not made good by the government for losing their
universal basic income, then there would be a drop in the price level that ensures (r −
g)(D/P ′ − D/P ) = −(S ′ − S)Et. That would give these consumers a capital gain that
exactly compensates them for losing the universal basic income.

For the government, the flow cost of making instantaneous transfers with a present
value 1/(δ + r − g) to a flow δ of agents is δ/(δ + r − g). The flow cost of transferring a
unit flow of consumption to a unit measure of agents is 1.18 Hence, switching from baby
bonds to an equivalent UBI could turn a surplus into a deficit if r − g > 0, and a deficit
into a surplus if r − g < 0. In both cases, this would then require the government to lend
to the public. Therefore, there is a range of baby bond policies that cannot be replicated
using a universal basic income when the government does not lend to consumers.

3 Complete Markets Economies

To set the stage, it is useful to discuss in some detail the effects of alternative fiscal policies
on growth and welfare in the complete markets version of our economy.

3.1 Infinitely Lived Consumers

Suppose δ = 0 and that markets are complete. So there is a fixed population of consumers
who live forever, and these consumers can perfectly share the idiosyncratic risk of their
capital accumulation technologies. This implies a representative consumer. Accounting
for possible wealth taxes, the standard Euler condition is then

g = ε(r − (ρ+ ω)). (14)

Since there can be no risk premium, µ + µq − r = 0, and hence (2) becomes x = r − g.
Together with g = (1− α)(µ− x), this yields

αg = (1− α)(µ− r). (15)

18If r − g > 0, then the present value of transfers made to all consumers born after a given initial date is
δ/((r − g)(δ + r − g)) in both cases.
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The negative technological relation between the return on capital and the growth rate of
the economy becomes a negative relation between the risk-free rate and the growth rate
of the economy.

Figure 1 shows the equilibrium (14) and (15). Variation in the productivity µ of the
capital accumulation technology results in shifts of (15) along the Euler condition (14),
and this leads to co-movement of r and g. On the other hand, variation in ρ produces
movements in the Euler condition along the technological restriction (15) on r and g. As
long as the factor share of capital is strictly positive, this leads to r and g that move in
opposite directions.
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Figure 1 Equilibrium in the representative agent economy.

In any equilibrium x, and hence r − g, must be positive. In Figure 1, the intersection of
g = ε(r − (ρ + ω)) with the diagonal defines the boundary of the region where this is the
case. Here, ε ∈ (1,∞), resulting in an upper bound on r and g for which r − g is positive.
The economy only has a well defined equilibrium if µ − ω is low enough to ensure that
the intersection of αg = (1− α)(µ− ω − (r − ω)) and g = ε(r − ω − ρ) is below this upper
bound. If ε ∈ (0, 1), then the requirement that r − g > 0 implies a lower bound on µ− ω.
Away from these boundaries, an increase in the wealth tax lowers the growth rate of this
economy. The technology implies that this raises the level of current consumption at the
same time.
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3.2 Perpetual Youth

When there is a flow δ > 0 of newborn consumers and consumers die randomly at some
rate δ > 0, the economy no longer has a representative agent. Ricardian equivalence fails
and fiscal policy can have important effects on the growth rate of the economy.19

Continuing to assume that markets are complete, the fact that r − g = x > 0 implies
that the present value of aggregate consumption will be finite. If the wealth tax is zero,
this will be enough to guarantee that competitive equilibria are Pareto efficient. The stan-
dard proof of the first welfare theorem works. The Uzawa-AK technology we are using
automatically rules out the dynamic inefficiencies that are central in Samuelson [1958]
and Diamond [1965].20

3.2.1 The Equilibrium Conditions

The fact that x = r − g > 0 in any equilibrium, together with our assumption that the
government does not lend to consumers, also implies that the government cannot run
permanent primary deficits. For simplicity, focus on the case (1 + γ)(1 + σ)/(1 + τ) ≤ 1,
so that wealth taxes are never necessary to avoid a deficit.

Eliminating ψ from the market clearing conditions (6)-(7) and using (5) gives

1 =

(
1− α
x

+
α

δ + x

)
1 + γ

1 + τ

E

W
+

1

x

(
ω +

(
1− (1 + γ)(1 + σ)

1 + τ

)
E

W

)
. (16)

This is simply a decomposition of the components of consumer wealth, into capital,
claims to labor, and government securities. The absence of idiosyncratic risk means that
the consumer decision rules (8)-(10) reduce to

g = (1− α)(µ− x), gy = g + δ + x−
(
ω +

E

W

)
,

E

W
= ρ+ δ −

(
1− 1

ε

)
gy. (17)

The side conditions are x > 0 and E/W > 0.
Using the fact that δ > 0, σ ≥ 0, and ω ≥ 0, it is easy to see from (16) that x ∈ (ω, ω +

E/W ) in any equilibrium. The second condition in (17) then ensures that gy < g+δ in any
equilibrium. Note that (17) and x = r − g implies the Euler condition gy = ε(r − (ρ+ ω))

for individual consumption growth. The Euler condition (14) for aggregate consumption
growth no longer applies.

19Detailed proofs for Section 3.2 are provided in the online appendix.
20It is easy to show that this is still true when the Brownian motionsZj,t that govern the individual capital

accumulation technologies are correlated, which introduces aggregate uncertainty.
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Given a solution to these equilibrium conditions, and an initial capital stock K, the
utility U of the average consumer already alive and the utility Uy of the current generation
of newborn consumers are

U =
(xK)1−α Lα

1 + γ

(
E/W

ρ+ δ

)−1/(1−1/ε)
, Uy =

g + δ − gy
δ

× U. (18)

This follows from (11) and the fact that Wy/W = (g + δ − gy)/δ in any steady state. Since
aggregate consumption grows at the rate g, the utility of a consumer who will be born at
some future date T ≥ 0 is UyegT .

3.2.2 Existence of Equilibrium

Solving both (16) and (17) for E/W and eliminating g and gy gives

E

W
=

1− ω
x(

1−α
x

+ α
δ+x

)
1+γ
1+τ

+ 1
x

(
1− (1+γ)(1+σ)

1+τ

) , (19)

E

W
= ε×

(
ρ+ δ −

(
1− 1

ε

)
((1− α)(µ− ω) + α(x− ω) + δ)

)
. (20)

By taking derivatives, one can verify that (19) is a positive, increasing, and concave func-
tion of x ∈ (ω,∞). Importantly, its slope converges to a limit that is greater than or equal
to 1 as x becomes large. The equation (20) is a line with slope (1− ε)α < 1. Therefore, the
only way these two equilibrium conditions can intersect with E/W > 0 is for the line to
be strictly positive at x = ω.

As in the economy with infinitely lived consumers, an increase in the wealth tax ω

implies an increase in x, because (19) implies ∂(E/W )/∂ω = −(E/W )/(x − ω) < −1

while (20) gives ∂(E/W )/∂ω = −(1 − ε) > −1. This increase in x lowers the growth rate
g = (1 − α)(µ − x) and increases the risk-free rate r = αx + (1 − α)µ. Increases in τ and
reductions in σ > 0 shift (19) down, which also raises x. This proves our next proposition.

Proposition 3 Suppose the fiscal targets of the government satisfy (1 + γ)(1 + σ)/(1 + τ) ≤ 1,
and that there is a wealth tax ω ≥ 0. Then the complete markets economy has an equilibrium if
and only if (

1− 1

ε

)
(1− α)(µ− ω) + δ

ρ+ δ
< 1. (21)

The equilibrium is unique and satisfies x ∈ (ω, ω+E/W ). Increases in ω and τ , and reductions in
σ > 0, all increase the level of aggregate consumption and lower its growth rate. Budget-neutral
increases in σ and τ are good for growth.
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Roughly speaking, permanent primary surpluses drive up interest rates and are bad for
growth. The key mechanism is seen most easily by considering the special case ε = 1, so
that x is determined by E/W = ρ + δ and (19). It is then immediate that larger surpluses
require a higher effective discount rate x, which lowers growth. Setting δ = 0 and σ = 0

in (19) confirms that this is a crowding out effect that is not present in an economy with
infinitely lived consumers.

The bound (21) holds trivially if ε = 1. For ε ∈ (0, 1), this bound is a lower bound on
(1− α)(µ− ω) + δ, while for ε ∈ (1,∞) it is an upper bound. In any stationary allocation,
the deterministic rate at which individual consumption can grow must satisfy gy < g + δ,
and a planner can take g = (1−α)(µ−x) up to (1−α)µ by taking x close to zero. Therefore,
evaluated at ω = 0, (21) is simply the bound that (1 − α)µ + δ must satisfy for the utility
of every stationary allocation to be positive if ε ∈ (0, 1), and finite if ε ∈ (1,∞).21

More generally, x > ω together with gy < g+δ implies that the rate at which individual
consumption can grow in a competitive equilibrium has to be less than (1−α)(µ−ω) + δ.
As a consequence, an increase in the wealth tax ω shrinks the set of economies with a
well-defined complete markets equilibrium if ε ∈ (0, 1), and expands it when ε ∈ (1,∞).
In particular, when ε ∈ (1,∞), a large enough ω will ensure that (21) holds.22

3.2.3 Unbounded Utilities

Suppose ε ∈ (1,∞) and (21) is violated at ω = 0. Then there will be a ω∞ > 0 so that
the economy has a well defined complete markets equilibrium for all ω > ω∞. This ω∞
is obtained by forcing (21) to hold with equality at ω = ω∞. Write the right-hand side of
(20) in terms of this ω∞ and then eliminate E/W from (19)-(20). The resulting equilibrium
condition for x implies (ε − 1)α(x − ω) < (ε− 1) (1 − α)(ω − ω∞). Since the equilibrium
satisfies x− ω > 0, it follows that x− ω ↓ 0 as ω ↓ ω∞. It is not difficult to strengthen this
to show that (x − ω)/(ω − ω∞) has a positive and finite limit as ω ↓ ω∞. In turn, (19) or
(20) then also guarantee that (E/W )/(ω − ω∞) has a finite and positive limit as ω ↓ ω∞.
Finally, the second equation in (17) can be written as g + δ − gy = (E/W )− (x− ω). This
implies that (g+ δ− gy)/(ω−ω∞) converges as ω ↓ ω∞, and an explicit calculation proves
that this limit is also positive.

Putting these results together with (18) shows that U/(ω − ω∞)−1/(1−1/ε) and Uy /(ω −
ω∞)1−1/(1−1/ε) converge to positive and finite limits as ω ↓ ω∞. So bothU andUy explode as

21Figure 3 shows the ω = 0 version of the bound (21) together with incomplete markets bounds reported
in Propositions 5 and 7.

22If ε ∈ (0, 1), then a large enough negative ω will ensure that the inequality (21) holds, even if it fails
at ω = 0. But a planner cannot deliver positive utility if (21) fails at ω = 0, and hence there can be no
equilibrium either.
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ω ↓ ω∞. If ε ∈ (1,∞) and ω∞ > 0, the economy is so productive that an omniscient central
planner can deliver unbounded utilities to everyone. But the economy does not have a
complete markets equilibrium if ω = 0. Competitive assumptions must be abandoned
and we can only speculate what will happen if the government follows such a policy.
By setting a wealth tax ω > ω∞, the government can ensure the economy does have
a complete markets equilibrium. Since lowering ω > ω∞ increases the growth rate of
the economy, there are unbounded Pareto improvements as the government lowers this
wealth tax towards ω∞.

3.2.4 A Ricardian Corollary

Consider some ω ≥ 0 for which (21) holds, and fix the solution to (16)-(17) obtained for
certain fiscal targets γ, τ , and σ. These fiscal targets only appear in (16). One way to
rewrite (16) is (

1− x− ω
E/W

)
1 + τ

1 + γ
= σ +

δα

δ + x
. (22)

This confirms x ∈ (ω, ω + E/W ), as argued in Proposition 3. Given the fixed solution for
x and E/W , one can choose any τ > −1 and σ ≥ 0 subject to this affine restriction and
obtain the same equilibrium. In particular, one could set σ = 0. But one can also let τ and
σ increase without bound. In that case, the first term on the right-hand side of (16) must
converge to zero. From (6), this means that ψ converges to zero, and so does the portfolio
weight of labor income. The condition (16) immediately implies that the limiting value of
(1 + γ)(1 + σ)/(1 + τ) is (x− ω)/(E/W ), and this is strictly inside (0, 1).

In other words, for every feasible government policy, there is an unbounded range
of equivalent policies, all implying the same equilibrium allocation of consumption, in
which the government uses large consumption taxes to make large transfers to newborn
consumers and run a primary surplus. Since E/W and the trajectory for aggregate con-
sumption are the same across all these policies, and since Et = (1 + τ)Ct, the construction
of these equivalent policies implies that Wt scales with 1 + τ . When taxes and transfers
are large, government securities account for almost all consumer wealth. An unforeseen
Ricardian increase in τ and σ will cause an upward jump in aggregate wealth that com-
pensates everyone for the higher consumption taxes they will have to pay.

3.2.5 The Welfare Properties of Stationary Allocations

Proposition 3 says that the economy has a unique equilibrium without wealth taxes if
(21) holds at ω = 0. The equilibrium generates a stationary allocation, and it is Pareto
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efficient. Stationary allocations that are not necessarily Pareto efficient are of interest more
generally. They can arise when fiscal parameters are decided once and for all at some
initial date, and in environments in which allocations can be adjusted over time by a
sequence of social planners.23

Stationary Allocations Stationary allocations are characterized by pairs (x, gy) with x >
0 and gy < g+ δ = (1−α)(µ− x) + δ < (1−α)µ+ δ. The resource constraint on aggregate
consumption C and newborn consumption Cy is gC = (gy − δ)C + δCy. This implies
Cy/C = (g + δ − gy)/δ, as in (13). The resulting utilities are

U =
(xK)1−α Lα

1 + γ

(
1−

(
1− 1

ε

)
gy

ρ+ δ

)−1/(1−1/ε)
, Uy =

(1− α)(µ− x) + δ − gy
δ

× U.

If ε ∈ (0, 1), then there are pairs (x, gy) for which U ∈ (0,∞) and Uy/U > 0 if and only if
(21) holds at ω = 0. If ε ∈ (1,∞), such pairs always exist, but (21) at ω = 0 is needed to
ensure utility is finite for all such pairs. It is easy to see that U is increasing in x and gy.
Also, Uy has a unique maximizer x = ((1−α)µ+ δ− gy)/(2−α) given any gy that satisfies
(1−1/ε)gy < ρ+δ and gy < (1−α)µ+δ. This is, in fact, the maximizer of Cy given such gy.
The resulting Cy is decreasing in gy, by the envelope theorem, while U/C is increasing in
gy. One can verify that the newborn utility Uy = Cy ×U/C has a unique global maximum
if (21) holds at ω = 0 and ε < 1 + 1/(1 − α). But if ε is larger, then Uy maximized over x
is decreasing in gy. In that case, Uy is unbounded. The negative effect of lowering gy on
U/C is outweighed by the concomitant increase in the level of newborn consumption.

Starting from some U ∈ (0,∞) and Uy ∈ (0,∞), an increase in x can never be a Pareto
improvement, even if it increases U and Uy, because consumers who will be born suffi-
ciently far into the future will be hurt more by the reduction in g. As long as (21) holds at
ω = 0, stationary allocations are Pareto efficient if and only if gy = ε(x+(1−α)(µ−x)−ρ)

and gy < (1 − α)(µ − x) + δ.24 Figure 2 shows the line gy = (1 − α)(µ − x) + δ and the
indifference curves of U and Uy for the Pareto efficient allocation that maximizes Uy. In
this example, ε ∈ (1, 1 + 1/(1 − α)), so that Uy has a global maximum. Also shown are
the allocation that maximizes U , the limiting Pareto efficient allocation that maximizes
aggregate growth, and the allocation that maximizes both g and gy.

23For example, consider a two-period overlapping generations version of this economy with logarithmic
utility in which a sequence of planners maximize a weighted average of the utilities of those alive at a point
in time. This leads to a subgame perfect equilibrium in which the allocation is stationary and not Pareto
efficient.

24The equation for gy is an Euler condition for the planner. It is easiest to infer this indirectly, taking
for granted that competitive equilibria with ω = 0 are efficient. In such equilibria, there will be an Euler
condition gy = ε(r − ρ), and r = x+ (1− α)(µ− x).
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These four allocations generate a convex quadrilateral. The upward sloping diag-
onal of this quadrilateral represents the Pareto efficient allocations that are stationary.
The edge that connects the maximizers of Uy and U corresponds to the contract curve
(∂Uy/∂x)/(∂Uy/∂gy) = (∂U/∂x)/(∂U/∂gy). The edge gy = ε((1 − α)(µ − x) − ρ) that con-
nects the maximizer of Uy and the Pareto efficient allocation that maximizes g corresponds
to ∂Uy/∂gy = 0. This approximates the contract curve for the current newborn generation
and generations that will be born very far into the future. One can use this to argue that
this convex quadrilateral is the set of stationary allocations that are not Pareto dominated
by other stationary allocations. Only the allocations on its upward-sloping diagonal are
Pareto efficient.
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Figure 2 Stationary allocations with perfect risk sharing

Implementation The full range of stationary Pareto efficient allocations can be imple-
mented by setting ω = 0 and varying τ and σ. At one end of this range is the allo-
cation preferred by consumers already alive. Maximizing U over x and gy subject to
gy = (1 − α)(µ − x) + δ shows that this allocation can be found by imposing E/W = x

in (20). Given that we restrict attention to non-negative transfers σ, the implementation
of this allocation requires that (1 + γ)(1 + σ)/(1 + τ) ↓ 0, so that (19) also reduces to
E/W = x. As illustrated by Figure 2, gy ↑ g + δ and therefore Cy/C ↓ 0 in this allocation.
Every new generation has to start with a very low initial level of consumption when its
growth rate gy conditional on survival is close to the maximal feasible rate g+ δ. Proposi-
tion 1 implies that consumption inequality approaches Zipf’s law. At the other end of the
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range of stationary Pareto efficient allocations, approximating a competitive equilibrium
with an aggregate growth rate that approaches its technological upper bound (1 − α)µ

requires balancing the budget and taking τ and σ to be large. This delivers the allocations
preferred by generations that will be born very far into the future.

It is not difficult to verify that the contract curve between consumers already alive
and the current generation of newborn consumers (the upper edge of the quadrilateral)
is given by x = ρ + δ − (1− 1/ε) gy. This amounts to imposing E/W = x in (20), which
yields gy = (1−α)(µ−x)+ δ−ω. Moving towards the allocation that maximizes Uy along
this contract curve increases ω. The equilibrium condition (19) can be used to back out
Ricardian combinations of τ and σ, as in (22).

4 Incomplete Markets Economies

In a complete markets economy with perpetual youth, a government that does not lend to
the private sector cannot run a permanent primary deficit. When markets are incomplete,
this is no longer true. In our setting, the perpetual youth assumption is essential, since
the present value of the labor income of an infinitely lived consumer would have to be
finite in any equilibrium. That would force r− g > 0, even when markets are incomplete.

4.1 A Summary of the Equilibrium Conditions

Recall from (5) that the value of government securities outstanding must satisfy,

(r − g)× D/P

W
= ω +

(
1− (1 + γ)(1 + σ)

1 + τ

)
E

W
,

D/P

W
≥ 0. (23)

The risky and risk-free market clearing conditions (6)-(7) are

ψ =
1− α
x

1 + γ

1 + τ

E

W
, (24)

1− ψ =
α

δ + r − g
1 + γ

1 + τ

E

W
+
D/P

W
. (25)

From (1)-(2) and (10), both x and g are functions of ψ and r − g,

x = ξς2ψ + r − g, g = (1− α)(µ− x). (26)

29



The consumer decision rules (8)-(9) then become

gy = g + δ + x− ξς2ψ(1− ψ)−
(
ω +

E

W

)
, (27)

E

W
= ρ+ δ −

(
1− 1

ε

)(
gy −

1

2
ξς2ψ2

)
. (28)

The side conditions are ψ ∈ (0, 1), x > 0, E/W > 0, and r − g ∈ (−δ,∞).
Given a solution to these equilibrium conditions, and an initial capital stock K, the

utility U of consumers already alive and Uy of newborn consumers are determined by the
same formulas (18) as in the complete markets economy. But E/W includes now the risk
adjustment −1

2
ξς2ψ2 and gy − (g + δ) includes a term ξς2ψ2 that reflects expected returns

on wealth in excess of r, as well as a linear term−ξς2ψ = −(µ+µq−r) that arises because,
for given x, more risk lowers r − g.

4.1.1 Solving this System

These equilibrium conditions can be reduced to two equations in ψ = (µ+µq−r)/(ξς2) and
r− g that can be interpreted as risky and risk-free market clearing conditions. First, using
(26)-(28) to eliminate gy and g gives x and E/W as functions of ψ and r − g. Then, using
(26)-(28) to eliminate x and E/W from (24) gives a risky market clearing condition. Given
ψ, it is a linear equation in r − g. And using (23) and (26)-(28) to eliminate (D/P )/W and
E/W from (25) gives a risk-free market clearing condition. This is a quadratic equation in
ψ given r − g 6= 0.

4.2 Primary Surplus Policies

In the complete markets economy, we know that there is an unbounded range of fiscal tar-
gets τ and σ, parameterized by (22), that all implement the same consumption allocation.
By (24), these large τ and σ imply a small portfolio share ψ of capital. In the incom-
plete markets economy, a similar policy does, usefully, affect consumption, by making
the exposure of individual consumers to idiosyncratic risk small. This gives rise to the
following approximation result.

Proposition 4 Suppose ω ≥ 0 and the economy satisfies the condition (21) for the existence of
a complete markets equilibrium when the fiscal parameters satisfy (1 + γ)(1 + σ)/(1 + τ) = Λ

for some Λ ∈ (0, 1]. Then the resulting complete markets utilities can be approximated in the
incomplete markets economy by taking τ and σ to be large, subject to (1 +γ)(1 +σ)/(1 + τ)→ Λ.
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The ψ and r − g that form part of a complete markets equilibrium will also approxi-
mately solve the conditions for an incomplete markets equilibrium, because the terms
ξς2ψ, ξς2ψ(1− ψ), and 1

2
ξς2ψ2 in (26)-(28) will be small. Given a large-τ and large-σ com-

plete markets solution for ψ and r−g, the continuity of (26)-(28) implies that the resulting
E/W must be close to the complete markets solution. To make this an equilibrium in the
incomplete markets economy, one can then use (24) to back out a τ , and the combination
of (23) and (25) to back out σ.

4.2.1 Unbounded Utilities Again

If ε ∈ (0, 1), then a violation of (21) at ω = 0 means that µ is so low that there are no
stationary allocations that deliver positive utility, not even when these allocations are
risk-free. This certainly rules out the existence of competitive equilibria in an economy
with incomplete markets.

Violations of (21) at ω = 0 are more interesting when ε ∈ (1,∞). We have already
shown, for ε ∈ (1,∞), that the complete markets economy has a unique equilibrium as
long as ω > ω∞, where ω∞ > 0 is the value of ω at which (21) holds with equality. And
utilities are unbounded as ω > ω∞ approaches ω∞. In combination with Proposition
4, this means that the government can also deliver unbounded utilities in the incomplete
markets economy. It can set ω > ω∞ close to ω∞, impose large consumption taxes, and use
these taxes to make large transfers to newborn consumers as well as back its outstanding
securities.

4.3 Balanced Budget Policies

We restrict attention to economies in which both ω = 0 and (1 + γ)(1 + σ)/(1 + τ) = 1.
The surplus ratio S would be an equilibrium variable if ω > 0, and that complicates the
definition of balanced budget policies.

We begin with a proposition that gives the range of economies for which the incom-
plete markets economy has a balanced budget equilibrium in which the price of govern-
ment securities is zero—a no-bubble equilibrium. This benchmark will help us character-
ize the economies for which unbounded government deficits are possible. The proof is in
the appendix.

Proposition 5 Suppose that ω = 0 and budgets are balanced. The economy has a no-bubble
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equilibrium for every σ ≥ 0 if and only if

(
1− 1

ε

)
(1− α)µ+ δ

ρ+ δ
< 1 +

(
1− 1

ε

)
δ

ρ+ δ
×
{

1
2
ξς2

δ
if ξς2

δ
< 1,

1− 1
2

1
ξς2/δ

if ξς2

δ
> 1.

(29)

For ε ∈ (0, 1), the bound (29) on µ is necessary and sufficient for equilibrium given any
particular σ ≥ 0. But for large enough ε ∈ (1,∞) there are economies with µ more
productive than (29) that do have an equilibrium for small σ ≥ 0 but not for large σ ≥ 0.

If ε ∈ (0, 1), then the lower bound (29) on µ is tighter than the complete markets
bound (21). The distance between these bounds is continuous, increasing, and bounded
in ξς2/δ ≥ 0. When consumers are exposed to idiosyncratic risk, the economy has to be
more productive in order to ensure positive utility. In contrast, if ε ∈ (1,∞), then the
complete markets bound (21) is tighter than the upper bound (29). To ensure finite utility,
risk-adjusted consumption growth rates cannot be too high, and this constraint is harder
to satisfy when there is no consumption risk.

4.3.1 Pure Bubble Equilibria

Now suppose again that budgets are balanced, but consider equilibria in which the price
of government securities is strictly positive. These are equilibria in which the price of
government securities is a pure bubble. Such bubbles are ruled out in the complete mar-
kets economy. As we will now show, pure bubbles are a possibility in our incomplete
markets economy.25

The conditions for a pure bubble equilibrium can be obtained from (24)-(28) by setting
r−g = 0 and replacing the risk-free market clearing condition (25) with the inequality 1−
ψ > (α/δ)(E/W )/(1 + σ). This inequality ensures that the value of government securities
is strictly positive.

Using the risky market clearing condition (24) to eliminate (E/W )/(1+σ) from 1−ψ >
(α/δ)(E/W )/(1 + σ), and noting that x = ξς2ψ, gives

ψ +
ξς2

δ

α

1− α × ψ
2 < 1. (30)

This inequality will be satisfied for all ψ ∈ (0, 1) close enough to zero, and a large ξς2/δ
forces ψ to be close to zero. Given that 1 + σ = (1 + τ)/(1 + γ), the risky market clearing
condition (24) can be written as E/W = ψx × (1 + σ)/(1 − α). Using the decision rule

25If such unbacked government securities trade at a positive price, then there are additional equilibria
in which other unbacked securities trade at a positive price as well, as in Kareken and Wallace (1981). The
equilibrium conditions only pin down the aggregate value of public and private unbacked securities.
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(27)-(28) to eliminate E/W from this condition, and then (26) to eliminate x and g from
the result, gives

ξς2

ρ+ δ

(
1 + σ

ε

ψ2

1− α +

(
1− 1

ε

)(
αψ − 1

2

(
1− (1− ψ)2

)))
= 1−

(
1− 1

ε

)
(1− α)µ+ δ

ρ+ δ
.

(31)
A portfolio weight ψ ∈ (0, 1) defines a pure bubble equilibrium if and only if it satisfies
(30) and (31) for some σ ≥ 0.

The properties of the left-hand side of (31) are key. As long as ψ is strictly positive, this
left-hand side is strictly increasing and unbounded in σ ≥ 0. And for any given σ ≥ 0,
the left-hand side of (31) is a convex quadratic in ψ, equal to zero at ψ = 0, with a positive
slope at ψ = 0 if ε ∈ (0, 1), and a negative slope at ψ = 0 if ε ∈ (1,∞).

If ε ∈ (0, 1), then it is now easy to see that (31) can be solved for some ψ ∈ (0, 1) if and
only if its right-hand side is positive. The resulting ψ will converge to zero as σ becomes
large, and so both (30) and (31) will be satisfied for all σ ≥ 0 large enough.

If ε ∈ (1,∞), then the left-hand side of (31) equals zero at ψ = 0 and at some ψ > 0.
This makes pure bubble equilibria possible even if the right-hand side of (31) is negative
but close enough to zero. If that right-hand side is positive, then (31) has precisely one
solution for ψ > 0, and that solution converges to zero as σ ≥ 0 becomes large. Again,
this guarantees a pure bubble equilibrium for all σ ≥ 0 large enough.

Since the right-hand side of (31) is equal to zero precisely when the complete markets
bound (21) holds with equality at ω = 0, this proves the following proposition.

Proposition 6 Fix ω = 0 and γ ≥ 0. If ε ∈ (0, 1), then the condition (21) is necessary and
sufficient for the economy to have pure bubble equilibria for all large enough τ ≥ 0 and σ ≥ 0 that
satisfy (1 + γ)(1 + σ)/(1 + τ) = 1. If ε ∈ (1,∞), then the condition (21) is sufficient but not
necessary.

In other words, if the economy has a complete markets equilibrium for ω = 0, then there
exist balanced budget policies for which the incomplete markets economy also has a pure
bubble equilibrium.

If ε ∈ (0, 1), then, even at σ = 0, one can solve (30)-(31) for ψ ∈ (0, 1) if the right-
hand side of (31) is positive but close enough to zero. One can further show that bubble
equilibria for σ = 0 continue to exist as µ increases up to the lower bound (29) required
for a no-bubble equilibrium. So economies in between the thresholds (21) and (29) have
pure bubble equilibria at σ = 0, even though they do not have a no-bubble equilibrium.

If ε ∈ (1,∞), then the fact that the left-hand side of (31) dips below zero for all ψ close
enough to zero implies that the lower bound on µ for which the σ = 0 economy has a
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pure bubble equilibrium is at or below the threshold that defines the complete markets
upper bound (21) on µ.

4.3.2 Comparing These Bounds

Figure 3 summarizes the results of Propositions 3, 5 and 6. It shows the ω = 0 version
of the complete-markets bound (21) together with the bound (29) for a no-bubble equi-
librium. For ε ∈ (0, 1), these are lower bounds on µ, while for ε ∈ (1,∞), they are upper
bounds.
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Figure 3 The complete and incomplete markets bounds

In the background, the dotted curves in Figure 3 show the upper and lower bounds on µ
for which the σ = 0 economy has a pure bubble equilibrium. Proposition 6 implies that
an increase in τ and σ shifts the upper bound to the right if ε ∈ (0, 1) and the lower bound
to the left if ε ∈ (1,∞). One can also show that the upper bound on µ collapses to the
complete markets bound if ε ∈ (1,∞) and σ becomes large. In Figure 3, the region where
the σ = 0 economy has a pure bubble equilibrium includes all economies with ε = 1.
This will not be the case when the upper bound for ε ∈ (0, 1) and the lower bound for
ε ∈ (1,∞) are both upward sloping curves. We will return to this below, where we study
the ε = 1 in much more detail.
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4.4 Primary Deficit Policies

It can be shown that incomplete markets economies that have a balanced budget equilib-
rium with a strictly positive bubble also have an equilibrium when the government runs
a small permanent primary deficit. This is very similar to what happens in the basic over-
lapping generations exchange economy with two-period lived consumers. Here we focus
on a much more striking result for our incomplete markets economy: there are economies
in which there is no bound on how large primary deficits can be.

4.4.1 The Possibility of Unbounded Deficits

To illustrate, Figure 4 shows an example of the risky and risk-free market clearing condi-
tions in an economy with ε ∈ (1,∞). The figure also shows the line 0 = ξς2ψ + r − g, and
a curve that gives the large-σ limit of the risk-free market clearing condition.26 The risky
market clearing condition does not depend on σ.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.03

0.025

0.02

0.015

0.01

0.005

0

0.005

ψ

rg

x=0

σ=∞

risky
riskf ree

Figure 4 The equilibrium conditions for σ ∈ (0,∞) and σ =∞.

As indicated by Figure 4, increasing σ shrinks the risk-free market clearing condition,
viewed as a mapping r − g 7→ ψ, towards its large-σ limit. And that limit continues to
intersect the risky market clearing condition. In this example, there is no bound on how

26The risk-free market clearing condition implied by (25) and (26)-(28) is a quadratic in ψ. It has another
branch that is not shown. That branch does not intersect the risky market clearing condition. In Section 5
we provide a more detailed characterization of the risk-free market clearing condition in the ε = 1 special
case.
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large transfers can be. To explain how it is possible for there to be no bound on the pri-
mary deficits a government can run, we focus on ω = 0, so that large σ > 0 automatically
imply large primary deficits.

Consider a sequence of σ that become large, and take a sequence of ψ ∈ (0, 1), r − g ∈
(−δ, 0), andE/W > 0 that satisfy (23) and (25). Along such a sequence, (23) and (25) imply
that E/W > 0 must converge to zero. The fact that the portfolio share of government
securities has to be bounded above by 1 means that when primary deficits become large
as a share of consumer expenditures, consumer wealth must also become large relative
to expenditures. Clearly, this is a possibility only if ε 6= 1. Furthermore, the risky market
clearing condition (24) implies that, for a converging sequence of deficit equilibria, with
E/W > 0 converging to zero, x = ξς2ψ + r − g must also converge to zero. If not, then ψ
would have to converge to zero, and a strictly positive limit for x = ξς2ψ + r − g together
with a zero limit for ψ would imply a strictly positive limit for r − g. This would violate
the side condition r − g ∈ (−δ, 0) that must hold when the government runs a primary
deficit. In sum, if there is a converging sequence of deficit equilibria, then it must have
the property that both E/W and x converge to zero.

Suppose that it is indeed possible to construct equilibria for all large σ, and suppose
that ψ∞ and (r − g)∞ are large-σ limits of equilibrium values for ψ and r − g. Then the
argument just given says that (r − g)∞ = −ξς2ψ∞, and that ψ∞ must solve the quadratic

ρ+ δ =

(
1− 1

ε

)(
(1− α)µ+ δ − ω −

(
1− (1− ψ∞)2

)
× 1

2
ξς2
)
.

This equation follows from imposing E/W = 0 and x = 0 in (26)-(28). The factor mul-
tiplying 1 − 1/ε on the right-hand side is simply the limiting value of the risk-adjusted
consumption growth rate gy − 1

2
ξς2ψ2. Since ρ+ δ > 0, this risk-adjusted growth rate will

have to be negative if ε ∈ (0, 1), and positive if ε ∈ (1,∞). In any case, the only solution
to the quadratic for ψ∞ that could possibly be in (0, 1) is

ψ∞ = 1−

√
1− 1

ξς2/2

(
(1− α)µ+ δ − ω − ρ+ δ

1− 1/ε

)
. (32)

This gives ψ∞ as a strictly increasing function of µ, as long as the right-hand side of (32)
is real. The constraint ξς2ψ∞ = −(r − g)∞ < δ implies that ψ∞ ∈ (0,min{1, 1/(ξς2/δ)}).
By varying ψ∞ throughout this interval one can trace out the non-empty interval of µ for
which there are ψ∞ ∈ (0, 1) and (r− g)∞ ∈ (−δ, 0) that can be interpreted as large-σ limits
of equilibria.
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Proposition 7 Fix some wealth tax ω ≥ 0. The economy has an equilibrium for all large enough
σ and almost all τ if and only if

0 <
(1− α)µ+ δ − ω

ρ+ δ
− 1

1− 1/ε
<

δ

ρ+ δ
×
{

1
2
ξς2

δ
if ξς2

δ
< 1,

1− 1
2

1
ξς2/δ

if ξς2

δ
> 1.

(33)

As σ grows without bound, the equilibrium values of ψ and r − g converge to the ψ∞ ∈ (0, 1)

defined in (32) and (r− g)∞ = −ξς2ψ∞ ∈ (−δ, 0). And E/W and x converge to zero at the same
rate, giving rise to zero utility for everyone if ε ∈ (0, 1), and unbounded utility if ε ∈ (1,∞). The
growth rate of aggregate consumption goes to its technological upper bound g = (1− α)µ.

We have only sketched the necessary part of the existence claim in this proposition. The
sufficiency part is in the appendix.27

The fact that growth goes to its technological upper bound is immediate from the fact
that x goes to zero when transfers become large. This also means that the level of ag-
gregate consumption, C = (xK)1−αL1−α/(1 + γ), goes to zero.28 If ε ∈ (0, 1) then (18)
implies that U/C goes to zero as E/W goes to zero, and so utility must go to zero. For
consumers already alive and consumers who will be born in the near future, very large
transfers are the worst possible policy a government can follow. But if ε ∈ (1,∞), then
(18) implies that U/C goes to infinity as E/W goes to zero. Furthermore, the risky market
clearing condition (24) implies that E/W and x converge to zero at the same rate. Since
1− α− 1/(1− 1/ε) < 0 this implies that U/C goes to infinity fast enough to overcome the
fact that C goes to zero. In other words, the government can increase U without bound by
setting σ large enough. Because ψ∞ ∈ (0, 1), consumption remains risky, unlike what hap-
pens when a government backs its securities with large consumption taxes. Nevertheless,
when ε ∈ (1,∞), the risk-adjusted individual consumption growth rate gy − 1

2
ξς2ψ2 in-

creases by just enough to make utility explode. Given that wealth taxes are non-negative,
(27) together with ψ∞ ∈ (0, 1) ensures gy < g + δ in the limit. So Uy/U has a limit in
(0,∞), and therefore Uy inherits the large-σ limits of U . Everyone will benefit from large
transfers.

A comparison of the ω = 0 version of the complete markets bounds (21) and the no-
bubble bounds (29) with the ω = 0 version of (33) shows that the region where large
transfers without large taxes are possible is precisely the region in between the ω = 0 ver-

27The condition (33) is not sufficient only in the knife-edge case ψ∞ = (1− ε)(1− α)α(1 + γ)/(1 + τ).
28From (24), aggregate wealth W = (1 − α)K1−αLα/(ψxα) goes to infinity. Also, E/W ↓ 0 and r − g →

(r − g)∞ ∈ (−δ, 0) implies that the portfolio share of claims to labor income converges to zero. When
transfers are large, most of consumer wealth is invested in risky physical capital and risk-free government
securities. A newborn consumer who somehow fails to receive baby bonds would be in dire shape.
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sion of (21) and (29). In other words, unbounded permanent primary deficits are possible
when an economy with ω = 0 has either a complete markets equilibrium or a no-bubble
incomplete markets equilibrium for every σ ≥ 0, but not both.

4.4.2 Pareto Improving Transfers

If ε ∈ (1,∞) and ω = 0, then utility is unbounded if the government can make large trans-
fers to newborn consumers without raising taxes. And the growth rate of the economy
converges to its technological upper bound. Under these circumstances, the incomplete
markets economy with ω = 0 also has balanced budget equilibrium, without bubble secu-
rities, and possibly with bubble securities as well. Clearly, these balanced budget policies
are Pareto dominated by permanent deficit policies with large enough transfers to new-
born consumers. More generally, for every economy that violates the complete markets
bound (21) at ω = 0, it is possible to find ω > 0 so that (33) is satisfied, which then implies
unbounded utilities if government transfers to newborn consumers are large. In contrast
to the surplus policies described following Proposition 4, large consumption taxes are not
needed.
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Figure 5 Pareto improvements from increases in σ

Proposition 7 only guarantees that large transfers imply large Pareto improvements when
ε ∈ (1,∞) and µ satisfies (33). But one can construct robust examples of Pareto improve-
ments that arise from small increases in σ. Figure 5 provides an illustration with ω = 0

and ε ∈ (1,∞) and µ that satisfy (33).29

29The parameters are ρ = 0.005, δ = 0.03, ε = 2, ξ = 7.5, α = 0.6, µ = 0.12, and ς = 0.25.
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As in the large-σ limit displayed in Figure 4, the equilibria shown in Figure 5 are the
only balanced growth equilibria. The lowest σ shown in Figure 5 is a balanced budget
policy. In this example, therefore, Pareto improvements occur as soon as the government
begins to use primary deficits to fund transfers to newborn consumers, even though the
economy is only growing at a rate that is much below its technological upper bound.30 It
is worth noting that the effects of changes in σ on growth are quite small in our economy.

5 The Special Case ε = 1

Proposition 7 implies that there must be bounds on how large permanent primary deficits
can be when ε = 1, no matter how productive or unproductive the economy may be. Here
we determine these bounds and describe the effects of taxes and transfers on growth and
welfare.

5.1 The Equilibrium Conditions

The equilibrium conditions (23)-(28) depend on ε only via the equilibrium condition (28)
for E/W . The assumption ε = 1 implies the familiar and very convenient simplification
E/W = ρ + δ. In turn, this means that the surplus ratio St defined in (3) is a parameter,
given by

S =
ρ+ δ + ω

ρ+ δ
− (1 + γ)(1 + σ)

1 + τ
.

We now allow for wealth subsidies and require ω to satisfy only that ρ+δ+ω > 0. Suppose
the fiscal targets imply S 6= 0, so that (23) gives D/(PE) = S/(r − g) ≥ 0. Taking into
account that x = ξς2ψ+ r− g, the market clearing conditions for risky and risk-free assets
(24)-(25) then reduce to

ψ

ρ+ δ
=

1− α
ξς2ψ + r − g

1 + γ

1 + τ
, (34)

1− ψ
ρ+ δ

=
α

δ + r − g
1 + γ

1 + τ
+
S

r − g . (35)

The side conditions are ψ ∈ (0, 1) together with r − g > 0 if S > 0 and r − g ∈ (−δ, 0) if
S < 0 . If S = 0 and r − g = 0, then the term S/(r − g) on the right-hand side of (35) must
be replaced by D/(PE) ≥ 0. These are now two equilibrium conditions to be solved for

30Recall from Proposition 3 that increasing σ when the government is running a surplus in a complete
markets economy is good for growth, as it is in Figure 5. In the complete markets economy, there will be
winners and losers. Here it is a Pareto improvement.
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ψ and r − g. As before, x, g, and gy follow from (26)-(27).
Adding up (34)-(35) and using ξς2ψ > 0, δ > 0 and σ ≥ 0 shows that r−g ∈ (0, ρ+δ+ω)

if S > 0. So we can infer that r − g ∈ (−δ, ρ+ δ + ω) in any equilibrium.

5.1.1 The Role of the Wealth Tax

The equilibrium values of ψ, r − g, x, and g only depend on ω and σ via S, unlike what
happens in the ε 6= 1 economy. And the definition of S shows that there is an unbounded
range of wealth taxes ω > −(ρ+δ) and transfers σ ≥ 0 of baby bonds that lead to the same
surplus ratio S . This means that, in particular, increases in the wealth tax cannot hurt
aggregate growth when they are accompanied by budget-neutral increases in transfers to
newborn consumers.

But (27) shows that the individual consumption growth rate gy does depend sepa-
rately, and negatively, on ω. And aggregate feasibility (13) says thatWy/W = (g+δ−gy)/δ.
Given rates of return and aggregate quantities, alternative combinations of ω and σ can
be used to target the level and growth rate of individual consumption trajectories.

5.1.2 An Easy Corner of the Parameter Space

Suppose consumers are infinitely lived, that labor is not needed to produce consumption,
and that there is no wealth tax. That is, δ, α and ω are all zero, and σ as well because there
are no newborn consumers to receive transfers. At the cost of not being able to study the
role of labor, perpetual youth, and wealth taxes, this produces a very simple equilibrium
condition that isolates the role of idiosyncratic risk and incomplete markets.

Eliminating r − g from (34)-(35) then yields

1 + γ

1 + τ
= 1−

(
1− ξς2

ρ
× ψ2

)
(1− ψ),

r − g
ρ

= 1− ξς2

ρ
× ψ2.

Given a solution for ψ and r − g, x = ξς2ψ + r − g implies x = ρ + ξς2ψ(1 − ψ) > ρ and
hence the economy grows at the rate g = µ − ρ − ξς2ψ(1 − ψ) < µ − ρ. The cubic on
the right-hand side of the equation for ψ is equal to 0 at ψ = 0, equal to 1 at ψ = 1. It is
monotone in between if ξς2/ρ < 1 and hump-shaped if ξς2/ρ > 1.

This immediately implies a unique equilibrium if τ > γ, and this equilibrium satisfies
ψ ∈ (0, 1) and r − g > 0. The equilibrium must be on the increasing part of 1 − (1 −
(ξς2/ρ)ψ2)(1−ψ), and so an increase in τ > γ implies a reduction in ψ. Larger government
surpluses reduce the portfolio share of capital. As long as ψ ∈ (1/2, 1), this lowers the
growth rate of the economy. But ψ ∈ (0, 1/2) if ξς2/ρ is large, and then an increase in
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the consumption tax increases the growth rate of the economy. In contrast to the results
obtained in Proposition 3 for a complete markets economy with perpetual youth, the
sign of the effect on growth of changing consumption taxes while the government runs a
surplus depends on parameters.

At τ = γ, the cubic for ψ has two positive solutions, ψ = 1 and ψ = 1/
√
ξς2/ρ, and

hence r − g = 1 − ξς2/ρ or r − g = 0. If ψ = 1 then be value of government securities
is zero, and we have a no-bubble equilibrium. Precisely when r − g < 0 in this no-
bubble equilibrium, the economy also has a bubble equilibrium, in which the value of
government securities is positive and r − g = 0. This happens when ξς2/ρ > 1. In that
case, 1 − (1 − (ξς2/ρ)ψ2)(1 − ψ) > 1 in between the two equilibria, and so there will also
be two equilibria if the government runs a primary deficit that is not too large.

5.2 The Three Primary Surplus Scenarios

Figure 6 shows the equilibrium conditions (34)-(35) for a common (1+γ)/(1+ τ) < 1, and
with σ ≥ 0 selected to illustrate each of the three possible primary surplus scenarios.
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Figure 6 Equilibria for the three primary surplus scenarios.

The risky market clearing condition (34) is the thick downward-sloping curve in each
of the three panels of Figure 6. This curve is a hyperbola, with a vertical asymptote at
ψ = 0, and a large-ψ asymptote−ξς2ψ. It gives r−g as a convex function of ψ ∈ (0, 1). The
large-ψ asymptote has a strictly negative slope precisely because ξς2 > 0. In the absence of
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idiosyncratic risk (or when markets are complete), the curve (34) would remain positive
for all ψ ∈ (0, 1), ruling out the equilibria shown in the S < 0 panel of Figure 6. The
risk-free market clearing condition (35) takes on a different shape depending on whether
S > 0, S = 0, or S < 0.

Primary Surpluses If S > 0, then the right-hand side of (35) is large for r − g close to
zero, strictly decreasing in r − g > 0, and converging to zero as r − g becomes large. As
a result, (35) defines an increasing function that maps ψ ∈ (0, 1) into r − g ∈ (0,∞). This
is the thick upward sloping curve in the S > 0 panel of Figure 6. It is easy to see that (34)
and (35) must always intersect when S > 0, and that these curves intersect only once. The
equilibrium is unique.

Balanced Budgets The upward-sloping curve in the S = 0 panel is obtained by setting
S = 0 in (35) and varying r − g ∈ (−δ,∞). The result is an upward sloping and con-
vex hyperbola with asymptotes at r − g = −δ and ψ = 1. Because D/(PE) can be any
non-negative number when budgets are balanced, the S = 0 version of the equilibrium
condition (35) also includes the positive horizontal axis up to the point where (35) crosses
the horizontal axis. In the example of Figure 6, this leads to two equilibria: a bubble equi-
librium with r − g = 0, and a no-bubble equilibrium with r − g < 0. Increasing σ so that
S ↓ 0 causes the S > 0 version of (35) to converge to the r − g ≥ 0 segment of the S = 0

version of (35). This means that the unique equilibrium for S > 0 converges to the bubble
equilibrium for S = 0.

For reference, the S = 0 version of the risk-free market clearing condition is also
shown in the background of the S > 0 and S < 0 panels.

Primary Deficits For S < 0, the risk-free market clearing condition (35) is given by the
hump-shaped curve that maps r− g ∈ (−δ, 0) into ψ < 1 in the third panel of Figure 6. Its
shape arises because S < 0 implies that the right-hand side of (35) is a convex function of
r − g ∈ (−δ, 0), with vertical asymptotes at r − g = −δ and r − g = 0. It is the sum of a
present value of labor income that is decreasing in r− g > −δ, and a steady state value of
government securities that is increasing in r − g < 0. Holding fixed (1 + γ)/(1 + τ), it is
easy to see that there is no limit on how far this curve can shift to the left as −S becomes
large, by taking σ to be large. Since ψ must be in (0, 1) in any equilibrium, this implies a
weak upper bound on −S given σ ≥ 0, even without reference to (34).31

31This upper bound can be written implicitly as
√
α (1− S) /(1 + σ) +

√
−S <

√
δ/(ρ+ δ). Impatient

consumers and a high labor share tighten this upper bound.
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Taking into account both equilibrium conditions, the upper bound on σ given (1 +

γ)/(1 + τ) can be found by increasing σ to the point where (34) and (35) are tangent.
Such a tangency can also be used to characterize the lower bound on τ ∈ (−1,∞) given
(1 + γ)(1 + σ). Reductions in τ shift (34) to the right and (35) to the left, directly via an
increase in the value of claims to labor income, and indirectly via an in increase in −S.32

As Figure 6 suggests, lowering σ for a given (1 + γ)/(1 + τ) < 1 so that S ↑ 0 causes
the S < 0 version of (35) to converge to the r− g ≤ 0 segment of the S = 0 version of (35).

The Effects on Growth Given ψ and r − g that solve (34)-(35), the equilibrium growth
rate g follows from x = ξς2ψ + r − g and g = (1 − α)(µ − x), and then the risk-free rate
is r = g + r − g. The thin downward sloping lines in Figure 6 represent lines with a
constant value of x = ξς2ψ+ r− g. All outcomes along these lines result in the same level
of consumption and the same growth rate. It is important to note that, where they cross,
the curve ψ 7→ r − g implied by the risky market clearing condition (34) must always be
steeper than the line r − g = x− ξς2ψ. It has an additional term that scales with 1/ψ.

As long as S > 0, an increase in σ shifts (35) to the right along the fixed downward
sloping curve (34). As Figure 6 shows, this lowers x and therefore increases the growth
rate of the economy. This is already familiar from the complete markets economy. Hold-
ing fixed (1 +γ)/(1 + τ), an economy with a surplus grows more slowly than an economy
with a balanced budget, for both of the two balanced budget equilibria. If the equilib-
rium changes continuously with further increases in σ, then growth will increase further
as long as targeted deficits are still consistent with equilibrium.

Similarly, a budget neutral increase in transfers moves (34) to the left, and (35) to the
right. As in the complete markets economy, this lowers x and therefore increases growth
when S ≥ 0. In other words, when the government does not run a deficit, an increase in
the consumption tax that is used to fund transfers is good for growth.

5.3 Balanced Budgets and Bubbles

Contrary to the illustration given in the S = 0 panel of Figure 6, the downward sloping
curve (34) may well intersect the curve (35) to the right of where both of these curves
intersect the horizontal axis. In that case, there is a unique equilibrium, and it has r−g > 0.
There is no bubble equilibrium. We now show how these two possible scenarios depend
on parameters of the economy and fiscal targets.

32Suppose ρ = 0.005, δ = 0.03, µ = 0.1, α = 5/9, and ξς2 = 7.5(0.3)2. Starting from γ = 1/20, τ = 1/5,
and σ = 1/7, varying only σ or only τ gives a maximal deficit ratio −S equal to about 0.025.
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To construct a possible bubble equilibrium, set r − g = 0, and use (34) to infer that

ψ =

√
1− α
ξς2/δ

ρ+ δ

δ

1 + γ

1 + τ
.

Plugging this into (35) gives

D

PE
=

1

ρ+ δ

(
1−

(
α× ρ+ δ

δ

1 + γ

1 + τ
+

√
1− α
ξς2/δ

ρ+ δ

δ

1 + γ

1 + τ

))
. (36)

In Figure 6, the value D/(PE) of the bubble is measured by the distance on the horizon-
tal axis between the points where (34) and (35) cross the horizontal axis (marked by a
solid dot and a circle, respectively). The properties of the balanced budget economy are
summarized in the following proposition, which is proven in the appendix.

Proposition 8 When fiscal targets imply balanced budgets, the economy has a unique steady
state equilibrium without a bubble. This no-bubble equilibrium has r − g < 0 if and only if the
right-hand side of (36) is positive. The economy then also has a unique steady state equilibrium
with a strictly positive bubble. When ω = 0 and σ = 0, the requirement that (36) is positive is
equivalent to

α <
δ

ρ+ δ

1− δ/2

ξς2
−

√(
δ/2

ξς2

)2
+

ρ

ξς2

 . (37)

More generally, an economy with S = 0 has a pure bubble equilibrium if and only if (1+γ)/(1+τ)

satisfies

α× 1 + γ

1 + τ
<

δ

ρ+ δ

−1

2

√
δ

ξς2
1− α
α

+

√√√√(1

2

√
δ

ξς2
1− α
α

)2
+ 1


2

. (38)

The economy grows faster in the no-bubble equilibrium than in the bubble equilibrium.

In the special case given by ω = 0 and σ = 0, the upper bound (37) on the labor share
parameter α is decreasing in ξς2 and positive if and only if ξς2 > ρ+ δ. As in the economy
infinitely lived consumers and no fixed factor, there must be enough idiosyncratic risk.
But here the labor share also plays an important role. No amount of idiosyncratic risk
makes a bubble possible if α > δ/(ρ+ δ).

On the other hand, when σ ≥ 0 and τ > 0 can be large subject to S = 0, then (38)
says that for any ξς2 > 0, there will be a bubble equilibrium as long as transfers and
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consumption taxes are high enough. This is already clear from the fact that the expression
for D/(PE) given in (36) is positive when τ is large enough. Lowering (1 + γ)/(1 + τ)

shifts the risky market clearing condition (34) to the left and the no-bubble version of the
risk-free market clearing condition (35) to the right. The result is a lower r − g, and once
r − g becomes negative, this makes a bubble possible.33

Large Taxes and Transfers imply Maximal Growth As τ and σ become large subject
to S = 0, (34) converges to ψ = max{0,−(r − g)/ (ξς2)} and the r − g 6= 0 branch of
(35) to the line segments {(ψ, r − g) : ψ ∈ [0, 1], r − g = −δ} and {(ψ, r − g) : ψ =

1, r − g > −δ}. It follows that the bubble equilibrium converges to (ψ, r − g) = (0, 0).
This maximizes the size of the bubble, as predicted by (36). This also means that x goes
to zero. In other words, the growth rate of the economy converges to its technological
upper bound, and consumer exposure to idiosyncratic risk disappears. The no-bubble
equilibrium converges to ψ = min{1, 1/(ξς2/δ)} and r − g = −min{ξς2, δ}. This again
means maximal growth, but now consumers remain exposed to idiosyncratic risk.

5.4 The Maximal Deficit Ratio

Figure 6 already shows that there can be no permanent primary deficits if the S = 0 econ-
omy does not have a bubble equilibrium. Proposition 8 shows that there will be bubble
equilibria in the S = 0 economy when consumption taxes and transfers to newborn con-
sumers are large enough. We have already argued that, when S < 0 is actually possible,
there will be an upper bound on σ given τ , and a lower bound on τ given σ. Here we
find an explicit expression for the largest possible primary deficit ratio −S that can result
when consumption taxes and transfers are varied jointly.

Proposition 9 For any surplus ratio that satisfies

0 < S +
δ

ρ+ δ
×
{

1
2
× ξς2/2

δ
if 1

2
ξς2 < δ

1− 1
2
× δ

ξς2/2
if 1

2
ξς2 > δ

there are fiscal targets for which the economy has an equilibrium. As −S approaches this upper
bound, consumption taxes and transfers to newborn consumers have to become large, and the
growth rate approaches its maximal feasible rate.

33This is reminiscent of what happens in an exchange economy with two-period lived consumers and
overlapping generations. A transfer to the young financed by a consumption tax can make the interest rate
at which the young are willing to save negative.
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When there is a large amount of idiosyncratic risk, this says that the upper bound on−S is
approximately δ/(ρ+δ), implying primary deficits almost as large as aggregate consump-
tion expenditures when ρ is very close to zero. But even at ξς2/2 = δ, this bound says that
the upper bound on −S is as large as half of aggregate consumption expenditures when
ρ = 0.

To prove this proposition, use (34) to eliminate (1 + γ)/(1 + τ) from the first term in
(35). The result is an equation that maps ψ and r − g into S. Varying ψ ∈ (0, 1) and
r − g ∈ (−δ, 0) subject to ξς2ψ + r − g > 0 then gives the feasible range for S. Subject to
these constraints, the supremum of −S is approached by letting x = ξς2ψ + r − g ↓ 0 and
r − g ↓ −min{δ, ξς2/2}. The fact that x ↓ 0 means that aggregate growth is maximal. The
fact that large consumption taxes will be required in such a limit is immediate from (34).
A detailed version of this backsolving argument is in the appendix.

5.5 Primary Deficits in the UBI Economy

The UBI version of (34) is the same as in the baby bonds economy. In the UBI version of
(35), σ must be replaced by θ, and α by α + θ. Define

S∗ = 1− ρ+ δ

ρ+ δ + ω

(1 + γ)(1 + θ)

1 + τ
.

Note that S∗ = S when ω = 0 and θ = σ. The UBI version of (34)-(35) is then

ψ

ρ+ δ + ω
=

1− α+θ
1+θ

ξς2ψ + r − g × (1− S∗),

1− ψ
ρ+ δ + ω

=
α+θ
1+θ

δ + r − g × (1− S∗) +
S∗
r − g .

This is of the exact same form as (34)-(35) with ω = 0 and σ = 0. The upper bound (37)
therefore applies to (α+θ)/(1+θ) ∈ (α, 1) rather than to α itself. This immediately implies
that there can only be a bubble equilibrium if θ is not too large. Certainly, (α+θ)/(1+θ) <

δ/(ρ + δ + ω) is necessary, and this is sufficient only if ξς2/δ is large. This is in sharp
contrast to the fact that a large baby bonds parameter σ can ensure the existence of a
bubble equilibrium. Furthermore, taking the UBI parameter θ to be positive lowers the
maximal size of the steady state primary deficit that is consistent with equilibrium.

Proposition 10 If transfers are in the form of a universal basic income, then, holding fixed ω,
the largest possible steady state primary deficit is attained by setting the universal basic income to
zero.
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The resulting upper bound on−S∗ is the same as the bound already described for the baby
bonds economy with σ = 0. The risk-free income generated by a UBI competes with the
government’s ability to sell risk-free securities, while transfers to newborn consumers,
to some extent, generate their own demand for risk-free securities. An increase in the
UBI tightens the upper bound on primary deficits faced by the government. If primary
deficits are close to their upper bound, a non-trivial increase in the UBI must therefore be
accompanied by some combination of higher consumption taxes and lower government
purchases that exceeds the extent to which the higher UBI would raise the deficit.

“Fiscal Space” The combination of the basic comparative statics of Figure 6 and of
Propositions 9 and 10 highlights the fact that how large primary deficits can be depends
very much on how these deficits are used. The upper bound on −S given in Proposition
9 is not some sort of budget constraint. There is no sense in which there is a single notion
of “fiscal space” that the government can use for whatever purpose it chooses.

5.6 Growth and Welfare

We have already shown that balanced budget or deficit equilibria with large taxes and
transfers can be very good for growth. Generations of consumers who will be born far
into the future will certainly benefit. But policies that maximize the growth rate of the
economy will be far from desirable for consumers already alive and nearby generations of
newborn consumers. Here we describe equilibrium allocations that are not Pareto dom-
inated by other equilibrium allocations under alternative assumptions about the policy
instruments available to the government.

5.6.1 Stationary Utilities

The utilities for this economy can be obtained by taking the ε → 1 limit in (9) and (11).
Since C = (xK)1−αLα/(1 + γ) this implies that

U =
(xK)1−αLα

1 + γ
exp

(
gy − 1

2
ξς2ψ2

ρ+ δ

)
, Uy =

Wy

W
× U, (39)

where gy and Wy/W are given by

gy = g + δ + x− ξς2(1− ψ)ψ − (ρ+ δ + ω),
Wy

W
=
g + δ − gy

δ
, (40)

47



and g = (1 − α)(µ − x). Unlike what we have seen in sufficiently productive economies
with ε > 1, here there is no way to keep U and Uy away from zero when g approaches its
technological upper bound. It will be useful to note that the risk adjustment −1

2
ξς2ψ2 in

(39) and the contribution ψ(µ + µq − r) = ξς2ψ2 to individual consumption growth gy in
(40) are small when ψ ∈ (0, 1) is small. But the negative effect of ψ on gy via the risk-free
rate r = (1− α)µ+ αx− ξς2ψ is of first order in ψ.

5.6.2 Fixed Taxes and Varying σ Only

Consider the effects of varying σ while holding ω ≥ 0 and (1 + γ)/(1 + τ) ≤ 1 fixed. We
know from Proposition 7 and Figure 5 that increases in σ can lead to Pareto improvements
when ε ∈ (1,∞) and the economy is sufficiently productive. Here we show that this
cannot happen when ε = 1.

Figure 7 shows the problem: the utility of consumers already alive and the growth
rate of the economy always move in opposite directions. In other words, even without
considering newborn consumers, varying transfers cannot be used to create Pareto im-
provements. Any attempt to improve the steady state utility of consumers already alive
comes at the cost of lower growth, and that will hurt generations far enough into the
future.
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Figure 7 The welfare consequences of varying σ

To see why this is true, begin by observing that varying σ implies changes in the surplus
ratio S that lead to shifts in the risk-free market clearing condition (35) along a fixed risky
market clearing condition (34). Starting with some S > 0, increasing σ lowers S and shifts
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the risk-free market clearing condition (35) to the right, towards the S = 0 version of that
condition. As can be seen using Figure 6, this increases ψ and lowers both r − g and x.
Since −(1− ψ)ψ − 1

2
ψ2 is decreasing in ψ ∈ (0, 1) and g + x = (1− α)µ+ αx is increasing

in x, this implies a reduction in U . But g = (1− α)(µ− x) increases with the reduction in
x, and so newborn consumers sufficiently far into the future will gain.

Next, suppose (38) holds, so that the economy will have both a no-bubble equilibrium
and a bubble equilibrium when S reaches zero. Consider the equilibria with r − g < 0

close to zero that emerge when S becomes negative as a result of further increases in σ.
For these equilibria, as (35) shrinks towards the vertical axis in Figure 6, the increases
in σ further lower r − g, increase ψ, and lower x. The result is further reductions in U

and increases in g. This continues until −S reaches its upper bound. At S = 0, the
no-bubble equilibrium also has a lower r − g, a larger ψ, and a lower x than the bubble
equilibrium. This implies a worse outcome for U and a better outcome for g in the no-
bubble equilibrium than in the bubble equilibrium. It is easy to verify that the same
conflict of interest arises for the S < 0 equilibria with r − g < 0 close to −δ.

This proves the following proposition and explains the example shown in Figure 7.

Proposition 11 Holding fixed consumption and wealth taxes, increases in transfers to newborn
consumers lead to lower and more risky individual consumption growth, a lower level of aggregate
consumption, and faster aggregate consumption growth if r − g is positive or negative and rela-
tively close to zero. The opposite happens when r − g is negative and relatively close to −δ. This
leads to a conflict of interest between consumers already alive and consumers who will be born
sufficiently far into the future.

5.6.3 No Wealth Taxes and Varying σ and τ Only

Now take ω = 0 and suppose that the government can vary both σ and τ . We already
know from Proposition 4 that by choosing very large consumption taxes and transfers to
newborn consumers, the government can approximate any of the stationary allocations
that are Pareto efficient. Here we highlight the fact that all current and future newborn
generations will then be worse off than they would be with more limited government
interventions that do not eliminate all idiosyncratic risk.

The absence of a wealth tax implies that gy is tied down by ψ and x. It is easy to see
from (39)-(40) that ∂U/∂ψ < 0 and ∂U/∂x > 0. A higher ψ implies more risk and reduces
the risk-adjusted growth rate gy − 1

2
ξς2ψ2. And a higher x implies both a higher level of

consumption and higher expected rates of return, because slow aggregate growth implies
a low rate at which capital depreciates. Since any equilibrium must have ψ ∈ (0, 1) and

49



r−g ∈ (−δ, ρ+ δ), this means that consumers already alive want to be as close as possible
to ψ = 0 and x = ρ + δ. This is also the complete markets equilibrium preferred by these
consumers.
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Figure 8 Indifference curves and contract curves

But the corner allocation ψ = 0 and x = ρ+ δ implies gy = g+ δ, and hence Wy/W = 0,
the worst possible outcome for newborn consumers. Combining (40) with g = (1−α)(µ−
x) shows that ∂(Wy/W )/∂ψ > 0 if and only if ψ ∈ (0, 1/2), and that ∂(Wy/W )/∂x < 0. So
the effects of ψ ∈ (0, 1/2) and x > 0 on Wy/W are the opposite of those on U . For low
ψ and high x, these effects are strong enough to create disagreement between consumers
already alive and the current generation of newborn consumers about the desirability of
reducing ψ or increasing x. In particular, the utility Uy at ψ = 0 is strictly increasing in ψ
and hump-shaped in x ∈ (0, ρ+δ). One can show that Uy has a unique maximum, and that
it satisfies ψ ∈ (0, 1) and x ∈ (0, ρ + δ). Relative to the allocation preferred by consumers
already alive, newborn consumers want to take some risk and increase aggregate growth
in order to improve their shareWy/W in aggregate consumption. We have already seen in
Figure 2 that the most preferred complete markets equilibrium for newborn consumers
has a strictly positive wealth tax, resulting in an allocation that is therefore not Pareto
efficient. Here we learn that, without a wealth tax, newborn consumers prefer to accept
some amount of idiosyncratic risk even though this is not Pareto efficient and even though
the government does have the instruments to eliminate it.

Figure 8 shows indifference curves for U and Uy at an allocation where Uy is maximal
given a lower bound on U . This allocation is on a curve that connects the allocation that
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maximizes U to the allocation that maximizes Uy. This is the contract curve for consumers
already alive and the current generation of newborn consumers. Also shown is a curve
that connects the allocation that maximizes Uy to the origin. This curve is defined by
∂Uy/∂ψ = 0 and x below what is optimal for newborn consumers. Since g = (1− α)(µ−
x) does not depend on ψ, this is the contract curve between newborn consumers and
consumers who will be born arbitrarily far into the future. In fact, every point on this
contract curve maximizes ln(Uy) + gT for some T ∈ (0,∞). The vertical axis between
x = 0 and x = ρ + δ is also a contract curve, for consumers already alive and consumers
that will be born very far into the future. These three contract curves enclose a triangle-
like area. Inside this area, the indifference curves of U and Uy cross, but always in such a
way that increasing U and Uy requires an increase in x. Such an increase lowers growth,
and therefore makes consumers who will be born sufficiently far into the future worse
off. In other words, the equilibrium allocations in this area are not Pareto dominated by
any other equilibrium allocations.

This sketches a proof of the following proposition. The full proof is in the appendix.34

Proposition 12 An equilibrium allocation (ψ,x) is not Pareto dominated by another equilibrium
allocation if and only if

∂Uy
∂ψ
≥ 0 and − ∂U/∂x

∂U/∂ψ
≥ − ∂Uy/∂x

∂Uy/∂ψ
. (41)

The two inequalities in (41) can be written as, respectively,

(1− ψ)ψ × ξς2

ρ+ δ
+

ψ

1− ψ ≤
x

ρ+ δ
≤ 1− ψ

(1− α)(1− ψ) + αψ
. (42)

In turn, (42) implies that ψ ∈ (0, 1/2), r − g > 0, and x < ρ + δ are all necessary for an
equilibrium allocation not to be Pareto dominated by another equilibrium allocation.

The necessary condition ψ ∈ (0, 1/2) is equivalent to ∂(Wy/W )/∂ψ > 0. Since ∂U/∂ψ < 0,
this is necessary for ∂Uy/∂ψ ≥ 0. Unlike in an economy with complete markets, the
condition r − g > 0 is not sufficient for an allocation not to be Pareto dominated by
another equilibrium allocation.35 The proposition shows that the x < ρ + δ property of

34In the example of Figure 8, all outcomes in the region bounded by the three contract curves, minus
the vertical axis, are indeed implementable. But for low ξς2 > 0 and high α ∈ (0, 1), it is possible for a
subset of allocations in this region to violate the constraint that the government does not lend to the public.
This shrinks but does not empty the set of efficient allocations that are implementable. All allocations with
x ∈ (0, ρ+ δ) and ψ close enough to zero are implementable.

35A sharper implication of (42) is r−g
ρ+δ >

ψ
1−ψ

(
ψ
1−ψ +

ψ
(1−α)(1−ψ)+αψ

)
. This lower bound can be inferred
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Pareto efficient equilibria also generalizes.

5.6.4 Varying σ, τ , and Wealth Taxes

For fixed x, a reduction in ψ implemented using σ and τ has a common benefit for U
and Uy because of the risk-adjustment −1

2
ξς2ψ2 to individual consumption growth. But

for ψ ∈ (0, 1/2), a reduction in ψ also has a positive first-order effect on the risk-free rate
that dominates the negative second-order effect on the risky component of the expected
return on wealth. As a result, a reduction in ψ ∈ (0, 1/2) increases gy. Note that (ρ + δ)×
∂ ln(U)/∂gy = 1 and (ρ + δ) × ∂ ln(Uy)/∂gy = 1 − (ρ + δ)/(g + δ − gy). This means that
∂Uy/∂gy is negative whenever ρ + gy > g and gy is feasible, as is certainly the case inside
the triangle-like region of Figure 8.

Now suppose the government can also increase the wealth tax ω. Because a budget-
neutral increase in ω and σ leaves ψ, x, and therefore g unchanged, the government can
raise ω to undo the positive effect of a reduction in ψ on gy. Only the common benefit of a
reduced risk-adjustment −1

2
ξς2ψ2 then remains, which makes the combined change in ψ

and ω a Pareto improvement for consumers already alive and newborn consumers.
This argument applies as long as ψ is positive. If there are bounds on how large taxes

and transfers can be, then it may not be possible to take ψ arbitrarily close to zero. But
without such bounds, Proposition 4 applies, and the government can use large transfers
and consumption taxes to approximate all complete markets equilibria with ω ≥ 0, rang-
ing from the Pareto efficient equilibria defined by ω = 0, all the way to the complete
markets equilibrium preferred by the current generation of newborn consumers. In such
a setting, both r − g < 0 and any evidence of significant idiosyncratic risk are immediate
indications of an inefficient configuration of government policy.

More generally, all stationary allocations that are not Pareto dominated by other sta-
tionary allocations can be approximated when both wealth taxes and wealth subsidies
are feasible. These are the allocations in the quadrilateral shown in Figure 2, which here
becomes a parallelogram. To see this, take some ω ∈ (−(ρ + δ), ρ + δ) and a surplus ra-
tio S ∈ (0, (ρ + δ + ω)/(ρ + δ)). The equilibrium is unique, with r − g > 0. Holding
fixed ω and S, one can let both τ and σ become large. This makes the right-hand side of
the risky market clearing condition (34) go to zero at any ψ ∈ (0, 1) and r − g > 0. The
first term on the right-hand side of the risk-free market clearing condition (35) also goes
to zero. The limit of the resulting sequence of unique equilibria is therefore ψ = 0 and
r− g = (ρ+ δ)S, which gives x = (ρ+ δ)S and some growth rate g = (1−α)(µ− x). Con-

from the portfolio share of risk-free assets and the labor share in the consumption sector only, without the
need to measure ξς2.
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sumption becomes risk-free in this limit, and the growth rate of individual consumption
gy = x+ g + δ − (ρ+ δ + ω) satisfies gy < g + δ by construction.

By using large σ and τ , and varying ω and S, one can now trace out the parallelogram
in Figure 2. The best stationary allocation for consumers already alive is approximated by
ω = 0 and S ↑ 1, and the best stationary allocation for the current generation of newborn
consumers requires ω = ρ + δ and S ↑ 1. Letting ω = 0 and varying S ∈ (0, 1) allows a
government to approximate all stationary allocations that are also Pareto efficient.

6 Finitely Lived Consumers

The assumption that consumers die randomly at some rate δ > 0 plays an absolutely
critical role in generating the possibility of unbounded utilities. This perpetual youth
assumption is clearly a bad assumption for individual consumers. But the consumers in
this economy can also be viewed as dynastically linked individuals who care about their
descendants (Weil [1989]). The rate δ can then be interpreted as the rate at which altruistic
links break down. If ε ∈ (1,∞) and the conditions of Proposition 7 apply, then potential
dynastic utilities are unbounded.

Consider the other extreme: consumers who live finite lives and who do not care
about their descendants. Specifically, suppose consumers die randomly at the rate δ, and
for certain when they reach the age T > 0. The flow of new births is δ/(1 − e−δT ), which
implies a unit measure of consumers in the steady state. There is no bequest motive, and
so consumers will choose to spend all their wealth by the time they reach age T .

In this setting we show that it is possible to construct fiscal policies so that the equilib-
rium utilities in the finite-T economy approximate their T =∞ counterparts.

6.1 Decision Rules and Aggregation

For consumers faced with constant rates of return, the Epstein-Zin preferences we have
used all along again give rise to the portfolio choice ψ = (µ+µq−r)/(ξς2). But the optimal
consumption-wealth ratio does depend on age.36 It is of the form

φa =
φ∞

1− e−φ∞(T−a) , a ∈ [0, T ], (43)

36See Schroder and Skiadas [1999] for the solution to the finite-horizon Epstein-Zin version of a Merton
problem. The online appendix provides a heuristic derivation of the decision rules reported here, and for
the equilibrium conditions that follow.
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where φ∞ is given below. Observe that φa is increasing in age and that φa → ∞ as a
approaches T from below. This is how consumers end up spending all their wealth as
they approach their terminal age T .

The dependence on age of these consumption-wealth ratios means that an equilibrium
must, in general, depend on the distribution of wealth across different age cohorts of
consumers alive at a given date. Here we will describe only how steady state equilibria
are determined. It will no longer be the case that an unforeseen change in government
policy immediately puts the economy in a new aggregate steady state. But it is possible
for the government to augment an unforeseen change in fiscal targets with one-time age-
specific proportional taxes on wealth and transfers of wealth to immediately implement
the new steady state distribution of wealth across age cohorts.37

Given a risk-free rate equal to r = g + x− ξς2ψ, the parameter φ∞ of the decision rule
(43) and the resulting individual consumption growth rate gy are determined by two con-
ditions that are completely analogous to the conditions (27)-(28) for the T =∞ economy,

gy = g + δ + x− ξς2ψ(1− ψ)− (ω + φ∞) , (44)

φ∞ = ρ+ δ −
(

1− 1

ε

)(
gy −

1

2
ξς2ψ2

)
. (45)

Given the decision rules ψ and φa, individual consumer wealth is no longer a geomet-
ric Brownian motion. Its drift decreases with age, and very rapidly as a approaches T .
But all consumers alive at a given point in time face the same expected returns and the
same uncertainty. Because of this, the consumption Cj,t of consumer j alive at time t

again follows dCj,t = Cj,t (gydt+ ψςdZj,t) conditional on survival.38 At time t, aggre-
gate consumption of the cohort born at date t − a is then Cy,te

−(g+δ−gy)a. In a steady
state, [Ct, Cy,t] = [C,Cy]e

gt, and accounting for births and deaths shows that Cy/C =

((1− e−δT )/δ)/((1− e−(g+δ−gy)T )/(g + δ − gy)).
Wealth at time t of a consumer j born at t− a can be inferred from (1 + τ)Cj,t/φa. This

can be used to calculate aggregate steady state wealth and infer the aggregate consumption-
wealth ratio. This yields

E

W
= φ∞

(
1− e−φ∞T

(
1− e−(g+δ−gy)T
g + δ − gy

)−1
1− e−(g+δ−(φ∞+gy))T
g + δ − (φ∞ + gy)

)−1
. (46)

37To emphasize: the distribution of wealth within an age cohort still does not matter for determining the
equilibrium.

38Since φa = Ej,t+a/Wj,t+a is determininstic, Ito’s lemma implies that dEj,t+a =Wj,t+adφa+φadWj,t+a.
Together, (43) and the Merton wealth dynamics imply that the drift of individual consumption is constant.
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Even though φ∞ could be negative in a finite-T economy, the E/W implied by (46) is
strictly positive by construction—it is a ratio of positive aggregate consumption and pos-
itive aggregate wealth. If φ∞ > 0 and gy < g + δ, as would be the case in the T = ∞
economy, then E/W converges to φ∞ as T becomes large.

6.2 The Finite-T Equilibrium Conditions

The risky market clearing condition (24) for the T = ∞ economy still applies here, for
finite T . But the risk-free market clearing condition (25) changes because the aggregate
present value of the labor income of consumers alive at a given point in time has to ac-
count for their ages. A straightforward calculation gives

1− ψ =
α

δ + r − g

(
1− 1− e−(r−g)T

r − g
δe−δT

1− e−δT

)
1 + γ

1 + τ

E

W
+
D/P

W
. (47)

The conditions for a balanced growth path can then be obtained from (23)-(28) by replac-
ing (25) with (47), replacing (27)-(28) with (44)-(45), and adding the new condition (46).
The additional variable is the parameter φ∞ of the age-dependent consumption-wealth
ratio φa. Its sign is unrestricted because φa is automatically positive, as is the aggregate
consumption-wealth ratio (46). As before, x has to be positive, and r − g has to have the
sign of the primary surplus. There is no requirement that δ+ r− g is positive, because the
present value of anyone’s labor income is automatically finite for any r − g.

6.3 Large-T Convergence

Given an equilibrium in the T = ∞ economy, it is rather straightforward to pick fiscal
targets for a large but finite T economy that generate an equilibrium close to that of the
T =∞ economy.

Fix some ψ ∈ (0, 1) and r−g > −δ that characterize an equilibrium in the T =∞ econ-
omy, given some fiscal targets τ and σ. This implies an x > 0, an aggregate consumption-
wealth ratio E/W > 0, as well as gy and g that satisfy gy < g+δ. To construct fiscal targets
and an equilibrium for the finite-T economy, define φ∞ = E/W and take ψ, r− g, x, g and
gy for the finite-T economy to be same as in the T = ∞ economy. By construction, this
means that (44)-(45) holds. Furthermore, (46) implies that one can take T large enough so
that E/W is arbitrarily close to φ∞ in the finite-T economy. One can then use the risky
market clearing condition (24) to construct a τT for the finite-T economy. Since E/W con-
verges to its T =∞ counterpart φ∞, this τT converges to τ . The risk-free market clearing
condition (47) can then be used to back out a σT . It will also converge to σ because the
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aggregate present value of labor income in the finite-T economy converges to its T = ∞
counterpart.

Proposition 13 Fix some ω ≥ 0 and fiscal targets τ > −1 and σ > 0. Suppose the T = ∞
economy has a well-defined equilibrium balanced growth path characterized by some ψ and r − g.
For all T large enough, it is possible to find τT > −1 and σT > 0 so that these ψ and r − g are
also part of an equilibrium balanced growth path in the finite-T economy. The resulting sequence
of fiscal targets satisfies (τT , σT )→ (τ , σ).

For simplicity, the case σ = 0 is ruled out in this proposition to avoid complications that
could arise from our assumption that transfers to newborn consumers have to be non-
negative. With that caveat, this proposition applies to all T = ∞ economies that have an
equilibrium, including the ones for which there is no upper bound on utility.

In the finite-T economy, the utility at time t of a consumer j born at time t − a can be
written as

Uj,a = Ct ×
g + δ − gy

δ

1− e−δT
1− e−(g+δ−gy)T

(
φa
ρ+ δ

)−1/(1−1/ε)
Mj,ae

(gy−g)a, (48)

where φa is defined in (43) andMj,a is an individual-specific positive Brownian martingale
with diffusion coefficient ςψMj,a and initial value Mj,0 = 1. For a newborn consumer at
time t, this reduces to Ct(Cy/C)(φ0/(ρ + δ))−1/(1−1/ε). Aggregate consumption is Ct =

(xKt)
1−αLα/(1 + γ). For the finite-T equilibria constructed in the proof of Proposition 13,

the x, g, and gy, as well as the trajectory of Kt and the {Mj,a}a∈[0,T ] are identical to what
they are in the corresponding T = ∞ economy. For any age interval [0, A] ⊂ [0, T ), it
then follows that the date-t utilities {Uj,a}a∈[0,A] converge to the corresponding utilities
for the T = ∞ economy. In this sense, finite-T utilities also converge to their T = ∞
counterparts.

As already noted, it is possible for the finite-T economy to immediately switch to a
new balanced growth path following an unforeseen change in fiscal targets, provided
that such a change is accompanied by age-dependent taxes and transfers that put the
distribution of wealth across age cohorts into its new steady state. Such a redistribution
of wealth can also be implemented in the T = ∞ economy, and then (48) can be used
to evaluate the welfare consequences for both T < ∞ and T = ∞. But for the T = ∞
economy, this results in a policy experiment that differs from the changes in τ and σ only
that we have considered throughout. We leave the transitional dynamics in a finite-T
economy of changes in τ and σ only to future work.
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6.4 A Quantitative Example

When an economy is sufficiently productive, we know from Proposition 7 that large
Pareto improvements will result from large transfers to newborn consumers, combined,
if necessary, with a positive wealth tax. Large consumption taxes are not needed. Al-
though it is not necessarily the case that the effect on utilities of increasing σ is monotone,
it is certainly possible to construct robust examples (as in Figure 5) in which even small
increases in these transfers are Pareto improving.
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Figure 9 Pareto improvements for T = 100.

Here we add to this an example showing that increases in transfers to newborn con-
sumers can be Pareto improving even in an economy in which consumers are finitely
lived and do not care about their descendants. In the example, we consider unforeseen
increases in σ that are accompanied by one-time age-dependent proportional wealth taxes
and transfers at the time a new policy is implemented, in such a way that the distribution
of wealth across a cohorts immediately jumps to its new steady state. In a steady state,
the aggregate consumption at time t of consumers born at date t − a is Cy,te−(g+δ−gy)a,
and the size of this cohort is e−δa/(1 − e−δT ), implying that the stationary distribution
of per-capita consumption across cohorts of ages a ∈ [0, T ] has a density that scales with
e−(g−gy)a. A new policy implies a new steady state value for g−gy and φa, and therefore for
the distribution of wealth across cohorts as well. Age-dependent wealth taxes and trans-
fers leave the within-cohort wealth distributions unaffected. The overall distribution of
wealth will be in its new steady state only after T units of time, when the last cohort that
lived through the unforeseen policy change leaves the scene.
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In such a setting, the effects of an unforeseen one-time increase in σ are implied by the
balanced growth conditions for the finite-T economy and (48). For individual consumers,
the Mj,a are unaffected, while the other factors in (48) jump upon the arrival of the new
policy. Figure 9 displays a scenario in which increases in σ can lead to Pareto improve-
ments. Over a bounded range of σ, the entire curve {Uj,a}a∈[0,A] shifts up with increases in
σ, and the growth rate g increases as well. The increase in g ensures that Cs/Ct increases
for all s > t, and hence that all future cohorts of consumers also gain from the increased
transfers to newborn consumers. In this example, T = 100 and δ = 0.005, resulting in an
average age of about 46 years, and an average life span of almost 79 years. The intertem-
poral elasticity of substitution is large, ε = 3, and the economy is productive enough that
its T =∞ counterpart does not have an equilibrium when the wealth tax is zero.39

7 Conclusion

In an economy in which consumers are subject to uninsurable idiosyncratic long-run risk,
the government may be able to run permanent primary deficits. How much the govern-
ment can borrow very much depends on how it uses use the proceeds. If the government
uses its deficits to make transfers to newborn consumers, then there may not be a bound
on government borrowing. Specifically, if preferences imply an intertemporal elasticity
of substitution greater than 1, and the economy is sufficiently productive, then there is no
upper bound on the Pareto improvements that large transfers to newborn consumers can
generate.

These unbounded Pareto improvements, implemented using a simple decentraliza-
tion and very simple government policies, only arise in an economy in which a logically
omniscient central planner in full control of everything in the economy could deliver in-
finite utility to everyone. Through the lens of more elaborate versions of our economy,
it may well be that the empirical evidence, generated by a mostly decentralized market
economy, leads to parameters for which large primary deficits are indeed Pareto improv-
ing. To rule these parameters out a priori because an imagined central planner could
deliver bliss hard-wires a pessimistic view of how productive the underlying economy is
and simply assumes away that large deficits can be Pareto improving via the mechanism
we describe. And we have shown that these parameters also imply substantial Pareto
improvements when households have a finite horizon and therefore bounded utility.

There are, of course, important caveats. A first important caveat, already hinted at in

39Specifically, µ = 0.09. The remaining parameters are given by ρ = 0.005, ξ = 7.5, ς = 0.2, and α = 0.6.
The fiscal targets satisfy (1 + γ)/(1 + τ) = 0.9 and ω = 0.
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the introduction, is the Kareken-Wallace indeterminacy that applies when governments
run permanent primary deficits. If the government can raise a lot of revenue by issu-
ing securities that are not backed by future taxes, then there is the possibility that long-
lived private-sector organizations emerge and compete with the government for these
revenues.

A second important caveat is that we have taken labor supply to be inelastic. This
means that we have abstracted from potentially important adverse effects of large trans-
fers on output. Our model can easily be adapted to allow for consumers who can choose
between more or less demanding careers only at the beginning of life. Even though this
makes the supply of labor elastic, unbounded Pareto improvements are still a possibility.
What happens when early career choices do not impose such tight restrictions on labor
supply requires further study.

A third important caveat is that our model does not explain why markets are incom-
plete. It is very likely that risk sharing arrangements in actual economies are more so-
phisticated than we have assumed them to be. The gains from large government deficits
we have described may be overstated once the effects of these deficits on private-sector
risk-sharing arrangements are taken into account.

A fourth important caveat is that we have assumed that government policy never
changes. Government securities may not be essentially risk free if political risk is im-
portant. An unforeseen transfer of newly issued government securities to a subset of
the consumers alive at the time of the transfer causes a sudden inflation. This hurts all
consumers who do not receive the transfer. The scope for such redistributions is large
when the steady state supply of government securities is large. If consumers come to as-
sign a positive probability to such events, then this will reduce their willingness to hold
government securities, and hence the ability of the government to run persistent primary
deficits.

We have already shown by example that small transfers to newborn consumers can
be Pareto improving when the economy is sufficiently productive that unbounded Pareto
improvements are possible. A richer model that incorporates the caveats we have just
described would be needed to estimate how large the Pareto improvements within reach
of government policy really are.
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A Proof of Proposition 5

Write the risky and risk-free market clearing conditions as

(
ξς2ψ + r − g

)
ψ = (1− α)× E/W

1 + σ
, (δ + r − g) (1− ψ) = α× E/W

1 + σ
,

respectively. The remaining equilibrium conditions (26)-(28) can be summarized by

1−
(

1− 1

ε

)
(1− α)µ+ δ − 1

2
ξς2

ρ+ δ
=

1

ρ+ δ

1 + σ

ε

E/W

1 + σ
(49)

+

(
1− 1

ε

)
α (ξς2ψ − δ + δ + r − g) + 1

2
ξς2(1− ψ)2

ρ+ δ
.

The side conditions are ψ ∈ (0, 1), E/W > 0, and δ + r − g > 0. Because of these side
conditions, the two market clearing conditions force ψ = 1−α = 1/(ξς2/δ) if it so happens
that 1 = (1− α)ξς2/δ. This in turn implies (E/W )/(1 + σ) = δ + r − g, and then the right-
hand side of (49) becomes linear in δ+ r− g. Varying δ+ r− g > 0 then proves the result.
In what follows, take 1 6= (1− α)ξς2/δ.

Adding up the two market clearing conditions gives

E/W

1 + σ
= δ + r − g −

(
δ − ξς2ψ

)
ψ, (50)

and eliminating E/W from the two market clearing conditions yields

δ + r − g =
α (δ − ξς2ψ)ψ

ψ − (1− α)
. (51)

Using (50) to eliminate (E/W )/(1 + σ) from (49) gives

1−
(

1− 1

ε

)
(1− α)µ+ δ − 1

2
ξς2

ρ+ δ

=

(
1 + σ

ε
+

(
1− 1

ε

)
α

)
δ + r − g
ρ+ δ

−
(

1 + σ

ε
+

(
1− 1

ε

)
1

2

)
× (δ − ξς2ψ)ψ

ρ+ δ

+

(
1− 1

ε

)(
(1− α) (δ − ξς2ψ)

ρ+ δ
− δ

ρ+ δ

(
1− 1

2

(
ψ +

ξς2

δ

)))
.

Taking into account (51), the right-hand side of this equation only depends on ψ. Varying
ψ ∈ (0, 1) over a domain that respects the side condition will trace out the set of µ for
which the economy has an equilibrium.
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A more concise way to write this backsolving equation is

1−
(

1− 1

ε

)
(1− α)µ+ δ − 1

2
ξς2

ρ+ δ
=

ξς2

ρ+ δ
× f(ψ)

where

f(ψ) =

(
1 + σ

ε
+

(
1− 1

ε

)
α

)
α (k − ψ)ψ

ψ − (1− α)
−
(

1 + σ

ε
+

(
1− 1

ε

)
1

2

)
(k − ψ)ψ

+

(
1− 1

ε

)(
(1− α) (k − ψ)−

(
k − 1

2
(1 + ψk)

))
.

and k = δ/(ξς2) 6= 1− α. The side condition δ + r − g > 0 together with (51) implies that
k−ψ and ψ− (1−α) must have the same sign. This means that the relevant domainD for
f(ψ) is (1− α, 1) if k ∈ (1,∞), (1− α, k) if k ∈ (1− α, 1), and (k, 1− α) if k ∈ (0, 1− α). By
computing a second derivative, it is not difficult to verify that the right-hand side of (51)
is convex in each of these scenarios. This right-hand side appears in the first term of f(ψ),
with a positive coefficient, and the remaining terms define a convex quadratic in ψ. So
f(ψ) is a convex function on each of the domains implied by the three possible scenarios.

Lemma A1 Assume that 1− α 6= k ∈ (0,∞). The function f : D → R is convex, and

(i) if k ∈ (1,∞) then D = (1− α, 1) and Df(1) < 0

(ii) if k ∈ (1− α, 1) then D = (1− α, k) and Df(k) < 0

(iii) if k ∈ (0, 1− α) then D = (k, 1− α) and

Df(k) > 0 if and only if
1

ε
>

(1− α)2 − k
(1− α)2 + σk

Furthermore, f(1) = 0 and f(ψ)→∞, as ψ → 1− α on the domain D.

The derivative calculations that prove these results are collected in the online appendix.
The fact that f(ψ) explodes near 1 − α means that f(ψ) has no upper bound. If k ∈

(1,∞), then the convexity of f(ψ) together with f(1) = 0 and property (i) of Lemma A1
implies that the range of f(ψ) is (0,∞). If k ∈ (1 − α, 1), then the convexity of f(ψ)

together with property (ii) implies a range (f(k),∞). And if k ∈ (0, 1 − α), then the
convexity of f(ψ) together with property (iii) again implies a range (f(k),∞), provided
that the condition for Df(k) > 0 is met. Using f(k) = −

(
1− 1

ε

)
1
2

(1− k)2 it is not difficult
to check that this proves Proposition 5.
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B Proof of Proposition 7

As long as budgets are not balanced, the equilibrium conditions can be summarized by
the risky and risk-free market clearing conditions

ψ =
1− α

ξς2ψ + r − g
1 + γ

1 + τ

E

W
, (52)

1− ψ =
α

δ + r − g
1 + γ

1 + τ

E

W
+

1

r − g

(
ω +

(
1− (1 + γ)(1 + σ)

1 + τ

)
E

W

)
, (53)

together with the decision rule

1

ε

E

W
= ρ+ δ −

(
1− 1

ε

)(
(1− α)µ+ δ − ω + α

(
ξς2ψ + r − g

)
−
(
1− (1− ψ)2

)
× ξς2

2

)
(54)

and the side conditions ψ ∈ (0, 1), E/W > 0, and δ + r − g > 0. Furthermore, the second
term on the right-hand side of (53) must be positive. To show existence for all σ ≥ 0 large
enough, one can vary (ψ, r − g, E/W ) subject to these side conditions, as well as (52) and
(54), and then show that the range of σ ≥ 0 implied by (53) is unbounded.

To this end, use (52) to eliminate ξς2ψ + r − g from (54). This yields(
1

ε
+

(
1− 1

ε

)
(1− α)α

ψ

1 + γ

1 + τ

)
E

W

= ρ+ δ −
(

1− 1

ε

)(
(1− α)µ+ δ − ω −

(
1− (1− ψ)2

)
× ξς2

2

)
. (55)

Suppose that µ satisfies (33). Then (32) leads to ψ∞ ∈ (0,min{1, 1/(ξς2/δ)}, and hence
(r − g)∞ = −ξς2ψ∞ ∈ (−δ, 0). The definition of ψ∞ says that the right-hand side of (55) is
zero at ψ = ψ∞. Since ε 6= 1, and since 1− (1− ψ)2 is strictly increasing on (0, 1), varying
ψ ∈ (0, 1) maps the right-hand side of (55) onto an open interval that contains 0. Suppose
the factor multiplying E/W on the left-hand side of (55) is non-zero. Then it will be non-
zero for all ψ ∈ (0, 1) in a small enough neighborhood of ψ∞. One can then take ψ > ψ∞

or ψ∞ < ψ to obtain solutions for E/W from (55) that are positive, and that will converge
to zero as ψ → ψ∞. The ξς2ψ + r − g implied by (52) are then also positive, and one can
consider a small enough neighborhood of ψ∞ to ensure that δ + r − g > 0 as well. Then
use (53) to infer σ,

(1 + γ)(1 + σ)

1 + τ

E

W
= ω +

E

W
− (r − g) (1− ψ) + α× r − g

δ + r − g
1 + γ

1 + τ

E

W
.
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Since ω − (r − g)∞(1 − ψ) > 0, the right-hand side will be positive and bounded away
from zero for all ψ ∈ (0, 1) close enough to ψ∞. Since E/W ↓ 0 as ψ → ψ∞, this means
that the implied σ will become arbitrarily large as ψ → ψ∞. It is not difficult to verify that
second term on the right-hand side (53) will also be positive for ψ close enough to ψ∞.
This implies existence for all σ ≥ 0 large enough.

This argument is predicated on the assumption that the coefficient multiplying E/W
on the left-hand side of (55) is non-zero at ψ∞. This is always true if ε ∈ (1,∞). But if
ε ∈ (0, 1), then this assumption will fail for precisely one value of τ ∈ (−1,∞). A tiny
perturbation of τ can then restore the existence result.

C Proof of Proposition 8

The no-bubble equilibrium is defined by (34) and (35)with S/(r−g) = 0. The risky market
clearing condition (34) defines r − g as a strictly decreasing function of ψ ∈ (0,∞), with
a vertical asymptote at 0 and a large-ψ asymptote −ξς2ψ. The risk-free market clearing
condition defines ψ as a strictly increasing function of r − g > −δ that tends to −∞ as
r − g ↓ −δ and to 1 as r − g →∞. These curves intersect precisely once at some ψ ∈ (0, 1)

and r − g > −δ. The bound (37) follows from setting D/(PE) = 0 in (36) at 1 + γ = 1 + τ

and solving the quadratic for α subject to 1 − α(ρ + δ)/δ > 0. More generally, requiring
D/(PE) > 0 in (36) is the same as requiring

k =
(1− α)/α

ξς2/δ
, A = 1− α× ρ+ δ

δ

1 + γ

1 + τ
> 0, A2 > k (1− A) .

Replacing the second inequality by an equality gives a convex quadratic in A that has
precisely one positive root, which is given by −(k/2) +

√
(k/2)2 + k. It follows that

D/(PE) > 0 is the same as requiring A to be to the right of this positive root. This
can also be written as (38).

D Proof of Proposition 9

We already know that the economy has at least one equilibrium for every S ≥ 0. Focus
therefore on equilibria with S < 0. Using (34) to eliminate (1 + γ)/(1 + τ) from (35) gives

S =
r − g
ρ+ δ

(
1− ψ − α

1− α
(ξς2ψ + r − g)ψ

δ + r − g

)
.
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We want to find the range of S < 0 implied by varying ψ ∈ (0, 1) and r − g < 0 subject to
ξς2ψ+r−g > 0, and δ+r−g > 0. Holding fixed some r−g ∈ (−min {δ, ξς2} , 0), the above
expression for −S is decreasing in ψ ∈ (−(r − g)/(ξς2), 1) ⊂ (0, 1). So −S approaches its
supremum −(r − g) (1− ψ) /(ρ+ δ) as ψ ↓ −(r − g)/(ξς2). This implies the upper bound

−S < δ

ρ+ δ

ξς2

δ

(
−r − g

ξς2

)(
1 +

r − g
ξς2

)
.

Maximizing this upper bound over r − g ∈ [−min {δ, ξς2} , 0] then gives −(r − g)/δ =

min {1, (ξς2/δ)/2}. The resulting maximum is the upper bound given in the proposition.
By letting−(r−g)/δ vary throughout (0,min {1, (ξς2/δ)/2}) and taking ξς2ψ+r−g > 0

close enough to zero, one can trace out all possible values of−S between 0 and this upper
bound. Given any such (ψ, r − g), the implicit (1 + γ)/(1 + τ) follows from (34), and then
taking ω = 0 and backing out σ from the definition of S completes the construction of an
equilibrium. Because ξς2ψ+ r−g > 0 can be taken to be arbitrarily close to zero, the risky
market clearing condition (34) means that (1 + τ)/(1 + γ) can be made arbitrarily large,
and then the definition of S together with ω = 0 ensures that σ > 0.

E Proof of Proposition 10

Define B = (α + θ)/(1 + θ). The risky and risk-free market clearing conditions are then

ψ

ρ+ δ + ω
=

1−B
ξς2ψ + r − g × (1− S∗),

1− ψ
ρ+ δ + ω

=
B

δ + r − g × (1− S∗) +
S∗
r − g ,

Holding fixed r − g < 0 and S∗ < 0, this implies

− ∂

∂B

ψ

ρ+ δ + ω
=

1− S∗
2ξς2ψ + r − g ,

− ∂

∂B

ψ

ρ+ δ + ω
=

1− S∗
δ + r − g ,

respectively. This means that the risky market clearing curve shifts less than the risk-free
market clearing curve if and only if 2ξς2ψ > δ. Suppose this is not true. Then, adding up
the two market clearing conditions and using ξς2ψ+ r− g ≤ 1

2
δ+ r− g < δ, δ+ r− g < δ,

and S∗/(r − g) > 0 gives δ/(ρ+ δ + ω) > 1− S∗, which contradicts S∗ < 0.
Since a reduction in θ implies an decrease in B, this means that the risky market clear-
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ing condition shifts to the right by less than the risk-free market clearing condition when
S∗ is held fixed by a reduction in τ . So there continues to be an equilibrium, and the fact
that the risky market clearing condition shifts to the right by less also implies that the
reduction in θ has made it possible to increase −S∗. This argument applies as long as θ is
positive, and hence θ = 0 is necessary for −S∗ to be maximal.

F Proof of Proposition 12

Since Wy/W = (g + δ − gy)/δ must be positive, and since it is only increasing in ψ when
ψ ∈ (0, 1/2), we can restrict attention to the domain

D =

{
(ψ, x) ∈

(
0,

1

2

)
× (0,∞) :

x

ρ+ δ
< 1 +

ξς2

ρ+ δ
× (1− ψ)ψ

}
.

On this domain, we have

[
∂ ln(U)
∂ψ

∂ ln(Uy)

∂ψ
∂ ln(U)
∂x

∂ ln(Uy)

∂x

]
=

1

ρ+ δ

 − (1− ψ) ξς2
(

1−2ψ
1+(1−ψ)ψ× ξς2

ρ+δ
− x
ρ+δ

− (1− ψ)

)
ξς2

1−α
x/(ρ+δ)

+ α − 1

1+(1−ψ)ψ× ξς2

ρ+δ
− x
ρ+δ

+ 1−α
x/(ρ+δ)

+ α

 .
The region of interest is

P =

{
(ψ, x) ∈ D :

∂Uy
∂ψ
≥ 0, − ∂U/∂x

∂U/∂ψ
≥ − ∂Uy/∂x

∂Uy/∂ψ

}
.

It is not difficult to verify that anywhere in the domain D,

∂Uy
∂ψ
≥ 0⇔ (1− ψ)ψ × ξς2

ρ+ δ
+

ψ

1− ψ ≤
x

ρ+ δ
, (56)

Furthermore, given ∂Uy/∂ψ ≥ 0 and (ψ, x) ∈ D,

− ∂U/∂x
∂U/∂ψ

≥ − ∂Uy/∂x
∂Uy/∂ψ

⇔ x

ρ+ δ
≤ 1− ψ

(1− α) (1− ψ) + αψ
. (57)

In both cases, the equivalences also hold for strict inequalities. The left-hand side of the
inequality (56) is strictly increasing in ψ ∈ (0, 1/2), and the slope of the right-hand side
of the inequality (57) is −ψ/((1 − α)(1 − ψ) + αψ)2. So (57) defines the upper bound of
the region P and (56) the lower bound. At ψ = 1/2, the lower bound exceeds 1, and the
upper bound is zero. So there will be some ψ ∈ (0, 1/2) where (56) and (57) both hold
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with equality. This corresponds to the (ψ, x) that maximizes Uy. An important fact about
the lower bound (56) of P and the indifference curves of U is that the lower bound of P
is steeper whenever the two meet. This follows from the fact that

1− ψ
1−α

x/(ρ+δ)
+ α

ξς2

ρ+ δ
< (1− 2ψ)× ξς2

ρ+ δ
+

1

(1− ψ)2

for all (ψ, x) in P . This is true because dropping the second term on the right-hand side
of this inequality gives the inequality (57). So an indifference curve of U cannot leave P
as ψ ∈ (0, 1) goes down.

Take any (ψ, x) ∈ P . Increasing x lowers g and therefore hurts generations that will
be born far into the future. Lowering ψ by itself hurts the current newborn generation
because ∂ ln(Uy)/∂ψ ≥ 0 in P . Along an indifference curve for U ,

d ln(Uy)

dψ
=
∂ ln(Uy)

∂ψ
+
∂ ln(Uy)

∂x

(
−∂U/∂ψ
∂U/∂x

)
=
∂ ln(Uy)

∂ψ

(
1−
− ∂Uy/∂x

∂Uy/∂ψ

− ∂U/∂x
∂U/∂ψ

)
≥ 0.

Therefore, lowering ψ along an indifference curve for U also hurts newborn consumers.
Since the indifference curve for U stays inside P when ψ decreases, this rules out Pareto
improvements starting from any (ψ, x) ∈ P . Conversely, take some (ψ, x) ∈ D\P . If (56) is
violated, then lowering ψ by some amount is a Pareto improvement. If (56) holds but (57)
is violated, then lowering ψ along the indifference curve for U is a Pareto improvement.
So every allocation outside P can be improved upon.
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