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Causality Characterizations: Bivariate, Trivariate

and Multivariate Propositions
L Introduction

In this paper, several propositions are proved which relate to
the concept of causality or exogeneity in multivariate weakly stationary
stochastic processes. From a mathematical viewpoint, the results concern
certain projections in Hilbert space, a fact which suggests standards
for proofs--standards which are, lamentably, lacking in much of this
literature. ([24] is the obvious exception). Theorems about these
projections would be of limited interest, however, were it not for a
natural interpretation of these concepts to causality in multiple time
series, due originally to Wiener [29]. This interpretation and the
propositions of Granger [4] and Sims [24] have given rise to a flourishing
empirical literature, including, but not limited to, [3], [5], [18],

[21]. It is hoped that the results proved here, which, for the most

part, give necessary and sufficient conditions for causality in terms of
structural aspects of the time series involved, will further the understanding
of this concept and these empirical results.

Propositions 1 and 3 strengthen and slightly generalize theorems
of Granger [4] and Sims [24]; specialists may find these proofs of
independent interest because they differ in character from their predecessors.
Proposition 2 was proved when the author was unaware of three unpublished
works (Haugh [8], Haugh and Box [9], and Pierce and Haugh [15]). These
papers independently arrive, via "operational methods" at what is
perhaps a special case of the present result. The difference in emphasis
between our papers——they stress the identification (in both the econo-

metrician's sense and the time series analyst's sense) of models from




data, whereas we stress intrinsic mathematical-logical properties of the
wide sense stationary process--is reflected in a difference in the
languages employed; this complicates a comparison of our papers, but
some comments on this subject are made at the end of Section III.

Propositions 4 and 5 continue to deal with bivariate systems,
but set out in a new direction. Any definition of a concept as loaded
with philosophical connotations as is causality must be able to withstand
severe scrutinization. Here we inquire about the behavior of this
definition under time reversal; equivalently, is time treated symmetrically
with regard to the past and future? Specifically, assume according to
the usual definition that Y does not cause X, by which we mean that past
Y is of no additional help, given past X, in predicting current X;
alternatively, X is said to be exogenous. Is it now true that, again
trying to predict the current X but now given future X, that future Y is
of no marginal value? Were this the case, causality might be said to be
neutral with respect to the flow of time. Whether this latter property
would enhance the definition is academic, because we give (restrictive)
necessary and sufficient conditions for time neutrality to occur in
terms of the Wold (bivariate moving average) representation, a Wold-like
representation, and the population regression of current Y on past,
current, and future X. A corollary notes that, with X exogenous, to
predict current X, in general the prognosticator will prefer the future
X,Y data to the past X,Y data--intuitively because in the latter situation
he will find Y of no marginal use.

Next, in hopes of shedding some light on a common criticism of
this methodology, we add a third series and consider the trivariate
system (ﬁ)(t). The sensitivity of a "Y causes X" finding to the under-

z
lying data set available for prediction has been appreciated from the



start. But beyond the presumption that conclusions in lower order systems
will be overturned in higher order systems and a suggestion by Granger

that partial cross spectra be considered ([4], p. 437), little

attention has been given to the analysis of systems of higher order than

two. Certain natural definitions are made and a straightforward generalization
to bloc-bivariate systems noted in Proposition 6. Then a more substantive
result is proved for trivariate and bloc-trivariate systems. Proposition 7

closely examines the relationship between the events "X is exogenous

X

with respect to Y in the trivariate system (Y " and "X is exogenous with
Z

respect to Y in the implied bivariate (Y) system." Using previous

propositions, the answer is indicated on a case-by-case basis, so that
the researcher is provided with a systematic way of using any information
about a third process Z which may be available. Indeed, the result may
be interpreted as an infinite dimensional Theil-type omitted variables
theorem. The role of the assumptions concerning instantaneous causality
in this result is also investigated. We stress that the word "finding"
pertains to a condition about theoretical regressions or projections in
the "population" (Hilbert space) which would be attained by consistent
estimators; many thorny issues involving statistical estimation procedures
are not discussed here.

Finally, some remarks on the economic significance of causality-
exogeneity relationships are offered, followed by a conclusion and

indication of some directions for further research.




II. Mathematical and Statistical Framework; Background and Definitions;
Normalization-Identification Issues
In this section the definitions and notation employed in the
rest of the paper are presented. Several very useful facts relating
these notions are stated for ready reference. A few theorems in the
prediction theory of multivariate stochastic processes which are impor-
tant for our purposes are explicitly mentioned. For a comprehensive
treatment of this entire topic, including proofs, the reader is referred
to any or all parts of these excellent references: Rozanov [17],
Hannan [7], and Wiener-Masani [30]. To make this part more readable and
to offer documentation for some of these assertions, extensive use of
technical footnotes is made; these may be skimmed on a first reading.
Because the first part of this paper and most of the related
econometrics and statistics literature deal with bivariate processes, we
adopt this tact as an expository device here. Since the major compli-
cations introduced by the general gq-variate mathematical theory are
already present when g=2, there results neither a loss of generality nor
a need for excessive repetition when multivariate situations are encountered.
On an underlying probability space {} with accompanying o-
algebra of subsets F and probability measure P is defined a vector
family of random variables (measurable functions), indexed by the discrete
parameter t, tel = integers, (ﬁ)(t) = (ﬁgzg),l/ which is the subject of
our study. Following tradition, we have already suppressed the dependence
of (5) on WEQ:(i)(t,W) might have appeared more appropriate. Our
notation reflects the fact that we will never investigate the behavior
of sample paths (a sequence {(ﬁ)(t,ﬁb, t=...-1, 0, 1, ... for fixed w})

in the sequel, so there is no need to keep track of a second argument.




We do require that (?)(t) be a weakly stationary stochastic process
(w.s.s.p.),z/ which means: (i) E(%)(t) = (g), all tel; and (ii) the

Gramian or autocovariance matrix

(X(t)X(t—k) X(t)Y(t-k)) (R () Ry
Y(OX(E-K)  Y(E)Y(t-k)) “\Ryy (1) Ry (k)

X X e =
(G (©)y (P(E-k) = Ty y(t,0) =B
does not depend on t, and so may be written PX Y(k)( = F; Y(-—k), where

T ; ;
denotes transpose). Here E denotes mathematical expectation, so that

one effect of (ii) is that X(t) and Y(t) must be in LZ(Q, F, P), the
space of all random variables Z(.) such that f|z(u0|2dP(uD < o, This

latter space is a Hilbert space, H, with the inner product given by

o, ) Zy@ ap@? and norm Iz, |1 = (flz; @ I* ap@)*?;

> =
<zy (W) 5 Z,(w)
these classical facts may be found in any analysis text, e.g., [10], p. 235.
< > = i
If Zl, 22 0, we write Zl 1_22, call Zl and 22

H, and understand these symbols to say the random variables are uncor-

orthogonal elements in

related (if EZl or E22 = 0, as will always be assumed).

More relevant for our purposes is a subspaceil (closed linear

manifold) of H, the space of values of the process (?), to be denoted

HX,Y or HX,Y (=, ), TFor any sets of integers Sps +e Sp3 tys vee
and any sets of real or complex constants @ys eee 3 bl’ 5 Us bn the
m n
finite linear combination z aiX(Si) + z ij(tj) is also a random
i=1 j=1

variable in H. The set of all such random variables will be indicated

by (U X@E))U( UY(@)) or SX@GE), YG), i, jEI);éf this is by definition
i€l iel

a linear manifold of H, which is in general not closed in the topology

of the norm. The closure of this set is defined to be HX,Y (or HX’Y(Hw, ®)

to emphasize the set of times which may be used in forming combinations).

. X
HX y is also referred to as the past, present, and future of the (Y)
»



process and for our purposes may be regarded as the underlying Hilbert
space, several of whose subspaces will command particular attention.

Let us regard the present as time t, and imagine that we
possess a long data series extending into the remote past, D(t) = {(i)(s),
s=t, t-1, ...} generated by the w.s.s.p. (?), a series sufficiently
representative to yield perfect knowledge of the covariance sequence
{rs, s=...=-1, 0, 1, ...} . It is natural to pose the question: What
is the "best' predictor of (i)(t+l), and what is the meaning of "best'?
Since we do not know which elementary event W has occurred, the meaning
of "best" will have to involve some statistical or averaging criterion;
by predictor, we mean Borel function measurable with respect to the ¢-
algebra generated by D. If our statistical criterion is now to minimize
mean square error, the best predictor will be a conditional expectation;
proceeding to give an effective formulation for the solution will be
quite difficult and will involve hard analysis in stochastic process
theory. If, however, we restrict ourselves to linear predictors (those
in HX,Y (-=, t); this subspace will hereafter be abbreviated as HX,Y(t)
when no confusion will arise) and if we maintain the criterion of mini-
mizing mean square error, then finding the optimal predictor for X(t+l)

6/

involves projecting— X(t+1) onto H (t), and similarly for Y(t+l).

X, Y
(Since so much use is made of the concept of projection, footnote 6
provides an extensive discussion of this and related topics.)

These (orthogonal) projections always exist and will be
denoted (X(t+l)1HX’Y(t)) and (Y(t+l)|Hx’Y(t)), respectively. Consequently,
there result the orthogonal decompositions X(t+1) = (X(t+l)|HX,Y(t)) +

u(t+l) and Y(t+l) = (Y(t+l)|HX Y(t)) + w(t+l), where all four of the

R.H.S. terms are unique. u(t+l) and w(t+l) are called the bivariate




innovations of X(t+1) and Y(t+l), respectively; they are the errors
associated with the optimal one-step-ahead predictors for the process.
Letting t vary through the integers, the corresponding errors (3) (t)
form a new s.p., the innovations process (i.p.), corresponding to the
original (%)(t) process; stationarity in the latter can be shown to
induce stationarity in the former with the aid of a family of unitary

operators on H familiar to economists as Lt, where L is the lag

X,Y
7 7 < .
operator.—/ More evident is the uncorrelatedness of (:)(t) over time.

since () () | HX’Y(t-l)EI

u u
and () (£-k)ety 4 (6-k) S By y(e-1), (D) |
(3)(t-k) (by which is meant that the autocovariance matrix formed from

the two vectors,

<u(t), u(t-k)> <u(t), w(t-k)>

<w(t), w(t-k)> <w(t), w(t—k)>)’

i

Ty = (), () (E-1)) = (

vanishes for k # 0; this will happen precisely when all of the components
of one vector are l_to all of the components of the other). If, as is
the case here, I' (k) = }.§ where § = {1 o= , the process
u,w 0,k 0,k 0 k#0

(3)(t) will be said to be vector white noise (v.w.n.); this said, we
will emphasize that being v.w.n. is a characteristic but not character-
izing feature of the innovations process.,

The rank of ), p(}), is known as the rankgf of the (?) process
and indicates an important structural characteristic of the system.
Some taxonomy regarding system rank follows: (a) (?) may be perfectly
predicted from its past only if (E)(t) = (g), all t; in this case z is
the null matrix, p(Z) = 0, and the process is said to be deterministic.
(b) p(}) > 1, the process is nondeterministic (n.d.): it possesses at

least one "component" which cannot be perfectly predicted from the past.

The subcases are: (1) D(Z) = 1 < 2, a degenerate case in which the




bivariate shock (3)(t) is essentially univariate. We will not study
this case here; however, the description suggests an alternative model-
ing for k-index models [22] in which a few aggregate shocks impinge on
several sectors of the economy.igj (ii) p(Z) = 2, the full rank case,
is surely the object of most physical interest. From now on we deal
exclusively with this case: Z"l exists, |}| # 0, two genuine (linearly

independent) shocks perturb the system each period.

This last development suggests the decomposition Hy Y(t)
»

Hx Y(t-l) ] DX Y(t), where the space D (t) is the two-dimensional

X,Y
orthogonal complement of (t-1) in H (t) (# was defined in footnote 7).
Y X,Y

It is not hard to show that DX Y(t) = S(u(t), w(t)). This construction
L]

is canonical: Hu,w(t) sHu’w(t—l) @ Du,w(t)' The v.w.:;tproperty of
(3)(t) immediately gives Hu w(t) = S(u(s), w(s), s<t) = Z ® S(u(s), w(s)) =
Sz_m & Du’w(s).——- Hence, Du’w(t) - DX,Y(t)’ tel. At the other extreme,
_ . X
the space t:IHX'Y(t) 2 HX,Y( =) is called the remote past of ({); we

could forecast a variable in it, Z(t+1l) say, perfectly from HX Y(t),

and just as well from H (t-k) for any keI. Stationarity guarantees,

X,Y

of course, that perfect forecasts are available arbitrarily far into the

future for such random variables.
By combining these subspaces, an important orthogonal decomposition

of the present and past of (X) is obtained: H (t) = H (-=) @
¥ X,Y XY

t
_ 12/
Hu,w(t) = HX,Y(-W) it Z & DX’Y(S).

S§==w
laid for the most important result in the time domain analysis of wide

The ground work has now been

sense stationary stochastic processes.

Wold Decomposition Theorem. For the w.s.s.p. (§)(t) with innovations

u ; A
process () (t), and where the associated spaces are as defined above,
w




(1) G® = (©+ @ (), vhere
Lars, d.
&G w:=dom o & @ (&l =)
P L u,w L4, = Wy Hy v
(ii) (i) (t) has the (one-sided) moving average representation
| 55 o

s ~ v X u -1,u
kZO A(k).(ﬁ)(t-k) B A*(:)(t) = kEO((Y) 0), (w)(“k)’z () (e=k) ,

where [[X, _(0)|* + ||Y  (0)[|® = trace § A() JA'(-K) = tr A] * A'(0) < =
T 3 k=0

.

(1i1) (g) (t) is deterministic, and, for all tel,
d.

d. T

The mnemonics 1l.r. and d. stand for linearly regular and
deterministic, respectively. The latter term has already been defined;
concerning the former, a s.p. (ﬁ)(t) is said to be linearly regular
(purely nondeterministic is also used) if ((i)(t)|HX’Y(5)) > 0 as s » —w;
intuitively, if the effect of the past diminishes as the '"past becomes
more remote,'" or equivalently by stationarity, if the distant future can
be predicted no better than by solely using the process mean C(here,
zero). Equivalent characterizations of linear regularityli/ are each of
(a) the ability to express the entire process as a m.a. involving its
innovations; and (b) HX,Y(-W) = {0}.

We may now paraphrase the Wold theorem to say that an arbitrary
W.S.S.p. may be decomposed into two parts, uncorrelated with each other,
of which one is purely deterministic and the other purely nondetermin-
istic. Since the purely deterministic part may be perfectly predicted
arbitrarily far into the future (with no effect on the linearly regular

part because of the orthogonality), we can without loss of generality
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subtract it from (?)(t) and assume that the process we are analyzing is
linearly regular.l&/ This assumption will be maintained throughout the
remainder of the paper: (?)(t) is a 1.r. w.sS.S.p.

Consequently, the process we study is characterized by (ii),
which requires further discussion for reasons other than the notation
implicitly introduced.

The matrices A(k), sometimes referred to as Ak, are unique,
from the second identity in (ii). The convolution definition is given
generically by the first identity, the interpretation of this infinite
sum, of course, being convergence in quadratic mean of each of the
random variable-partial-sum components. The condition that the indicated
trace be finite is necessary and sufficient for this convergence; it is
succintly expressed in terms of the (now, nonrandom) matrix convolution,
and amounts simply to the requirement of finite variance for X(t) and
Y(t) because the autocovariance sequence FX,Y(‘) of (%) = A * (3) may
easily be expressed in terms of the autocovariance sequence Fu,v(') as

A * B o * A'(k), where A'(k) = AT(—k), T indicates ordinary matrix

’

transpose and ' is the appropriate notion of convolution transpose, and

o0 oo

A * B(m) = X A(m-3j)B(j) = z A(3)B(m-j). When A(.) and B(.) are
j=—w j=—e

one-sided, i.e., A(s) = B(s) = 0, s < 0, then these sums are both finite

and the lower limit may be replaced by 0. For the case of v.w.n. the

/

double summation implied by the double convolution reduces to AZ * A'(k)lé
or A % ZA'(k); these last formulae suggest the desirability of a repre-

sentation in which z = I so that RX v~ A % A'(k). This may be done by
3

1/2 =
iz ¥ Y2 Soro: the convolution, to arrive at (?)(t) =

tucking Z
AY 1/2 4 2‘1/2(3)&) =B * (5)(t), say (see p. 15 for an elaboration of

this procedure). In the new representation R X.Y (k) = B * B'(k), since
b ]




= 41 =

1/2

i

Cov Z_ (3)(t) E(i)(t)(i)T(t) = I; finite variances of X(t) and Y(t)

becomes tr B * B'(0) < «, which will occur precisely when Z bil(i) +
L. -] o & i=0
2 7 B o, % .
z blz(l) < « and E b21(1) + z b22(1) < =, where
i=0 i=0 i=0

b (a) bBuzls)

BEYy = H 12 , X(t) = by, * e(t) + by, *n(t) and Y(t) =
bZl(') b22(')

b21 * w(t) + b22 * n(t).

The last remarks show that, if we form B(z) with typical
element (j,k=1,2) bjk (z), |z| < 1 where z is now a complex number, then
z b k(s)zS converges pointwise in the unit circle, and so

s=0 J
defines an analytic function there. On the unit circle, square summa-

bjk(z) =

bility of the sequence and classical methods yield the representation

b

jk(el}‘) = z bjk (s)elhs, where the convergence is not pointwise but in
s=0

LZ[O’ 2n]. The latter function can be shown to be a radial limit of the

(Z_l). The close

former; analagous results hold on |Z| > 1 for bjk

connection between these representations is the study of functions of

Hardy class HZ: those square integrable functions with Fourier series

involving only positive powers of z = ell.

These considerations suggest use, at least for placeholder

purposes, of the method of "z-transforms,"
(=]
X X k L ¢
) ((Y)(t)’ (Y)(t*k))z = B(z) B (z 7), where the
k=—w
equality of the coefficients of zk in the formal expan-

a principal result of which

is: R X,Y (z)

I

equality means
sion of." 1In other words, the coefficients of the convolution B * B'(s)
may be ascertained by multiplication in B(z) BT(z_l) and checking the
coefficient of ZS; nothing more is involved here than the familiar

notion that "convolution in the time domain corresponds to multiplica-

tion in the frequency domain.'" More significantly, however, the theoretical
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importance of the analytic B(Z) matrices has only been hinted at ([17],
pp. 58-63).

The discussion of the last several pages has given a sketch of
an existence proof of a very important way of looking at the process
under study. The guaranteed representation has not been constructed,
however; the problem in practice is, given RX,Y(S), how to "factor" it
into the B * B'(s) of the past paragraph? There are several layers
of difficulties involved: (1) When a B(.) is found which performs the
factorization, there is the further requirement that, in (?)(t) = B * (z)(t),
the (s) process must 'be in the right space," by which is meant,

HX,Y(t) = He,n(t)’ all t. (This latter notion will be abbreviated
(m.s.) and taken up in the sequel.) In other words, not just any v.w.n.
process will do; and not only must the (i) and (E) processes be defined
on the same probability space, they must each essentially be linear
combinations of each other's past and present, or in another (perhaps
more economic) context, they must carry the same information. The
interplay between analytic properties of B(#Z) and the associated sto-
chastic properties (of the corresponding (E)(t)) is treated in [17],

Ch. 2. These remarks will be expanded momentarily. The second diffi-
culty is: (2) There is an identification problem which, when (1) is
understood, is naturally solved by restricting attention to those B(.)
associated with "errors in the right space" and imposing a normalization
rule to distinguish between the observationally equivalent structures
within this appropriate class. (3) Finally, when a theoretical under-
standing of the first two points is in hand, and even in an ideal case
where the observable data, RX’Y(S), is generated by elements which are

ratios of polynomials, a procedure for obtaining the desired factorization
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is not trivial. A method which terminates in a finite number of steps
is presented in [17], p. 44-47; since many square roots and polar
decompositions may be needed, it is not an easy exercise to generate
examples with pencil and paper. Actually, what this algorithm generates
is a B(z) matrix such that: (i) all of its elements are rational and
analytic in |z|< 1; and (ii) det B(z) has all of its (finitely many)
zeros in |z| > 1. Only after much more machinery is developed (p. 88)
is Rozanov able to show that this B(zZ) has an associated errors process
which is in the right space, thereby correctly stating and proving for
the first time a result which had often been assumed true, in various
forms, and even to the present is often not adequately ::q;:p'lrer.:iatta'd.~l~-§-}r

Concepts closely allied to m.a.r. are those of autoregressive
representation (a.r.)lz/ and extended autoregressive representation
(e.a.r.); only the latter is new. When the l.r. w.s.s.p. (i)(t) with
associated i.p. (ﬁ)(t) permits the representation B * (ﬁ)(t) z
EOB(S)(i)(t—s) = (E)(t), with B(0) = I, where the sum converges in
z;adratic mean, then that representation is known as the a.r. We stress
that it is important that the "errors'" be the innovations, in which case
the force of the a.r. is that ((i)(t)[HX,Y(t-l)) has the convenient

oo

representation - ZIB(S)(ﬁ)(t-S) rather than the more generally necessary
representation az_the limit of a sequence of finite sums, with possibly
changing weights. We say the process has an e.a.r. if, in addition, all
of the projections into the subspaces Hx(t—l} and HY(t—l), for example,
(Y(t—i)[Hx(t—l)) also have representations of the form -Elhi(j) X(t-3) .
Uniqueness of the various representations of this paragg;ph is apparently

a necessary requirement to maintain consistency with the assumption that

the process has full rank.
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The Wold decomposition has given us a coordinate free representation

in terms of the physically meaningful innovation vectors for the l.r.w.s.s.p.

under study: (¥)(t) = X Ak(S)(t-k) A * (3)(t), ((:)(t)s (E)(t"k))xal =

k=0
Ak and Z = ((:)(t), (3)(t)) (so that AO = I). The parameters Ak and z are

of course unique, since the formulae give them in terms of observables
or well-defined operations (projections) involving observables. We will
refer to this as parameterization (I) or the natural parameterization
(n.p.); it is especially convenient when the autoregressive representa-
tion exists, since its coefficients will be those in the power series

expansion of A_l(z), where A(z) = Z A(k)zk. We emphasize that the
k=0

representation itself implies H (t) S Hu W(t), and the construction of
?

X,Y
(:)(t) implies its subordination to (¥)(t); thus (3)(t) are mutually

17/

subordinate (m.s.): HX Y(t) = Hu v(t). It is this last fact which
b ] »

is crucial for prediction theory generally and our decompositions in

particular: Hu V(I:) must represent a reasonably convenient description
’

of current and past (?). Other convolution representations, say (?) =

é#(%) which, like (:), are vector white noise, also exist; as will be

clearer from the ensuing paragraphs, there will be no difficulty in
s u - : 5 @
normalizing these (;? so that their contemporaneous covariance matrix is

the identity. Yet only for (i? = T(:), |T| # 0 will Hu w(t) E_HX Y(t);
W i i ]

those (%) which are not subordinate to (i) yield lower prediction
variances for (?). They are not suitable for prediction purposes because
they carry information about the future of the (ﬁ) process.

For some purposes we may wish a representation (i)(t) =
D * (ﬁ)(t), where the v.w.n. (i)(t) is mutually subordinate to (ﬁ)(t)

and ((s)(t), (i)(t)) = 1. Rozanov terms (ﬁ) a fundamental process

(f.p.) ([17], p. 56), and makes it a part of his definition of the
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moving average representation of a process. Obtaining a f.p. from the
i.p. amounts to choosing an orthonormal basis in Du,w(t); since there
are as many of these as there are orthonormal matrices, a f.p. retains
this nonuniqueness, which may either be accepted or eliminated by
imposing additional restrictions.

Starting with the n.p. (§)(t) = AR (:)(t), Cov (3) =), we

arrive at a f.p. by: diagonalizing z, PZP' = A; writing Z = P'AP =

(P.ﬂlfzp)(P.Alsz) . 21/2 21/2, 2-1/2 . P.ﬂ—llzp’ A = (J\l 0 )and
1/2 0 %
n 1/2]; and finally taking (2)(t)

2

1]

A

A —_—
e | o 2@, Go

V2w 712 o) =

has covariance matrix the identity, and (5)(:) = Az

Azllz %* (i)(t) is a m.a.r. with (i)(t) as f.p. Any Q, Q'Q = I results

in B = 4§ x o®)(e) = a [V () (®), so that O =

Q(z)(t) is also fundamental. Since A(Q) =1, :he nonuniqueness of the
f.p. may be expressed by noting that the zero-order coefficient in the
convolution is lezQ' where 21/2 is unique, but Q' may be any ortho-

normal matrix. It is a well-known result in matrix theorylg/ ([6],

-1/2) may be lower (respec-

p. 191-192) that any symmetric matrix (Z
tively, upper) tringularized by postmultiplication by an orthonormal
matrix; the triangularization is unique if the diagonal elements are
required to be positive. We call these normalizations II-L and II-U,
and will actually produce them below in a way which does not lose track,

as this argument has, of the innovations.

Let us return to the n.p.: (ﬁ)(t) = A * (:)(t), Cov(:)(t) =

o
YU and A(0) = I. We retain u(t), but replace w(t) in our basis
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o
by v(t), where v(t) = w(t) - (w(t)|u(t)) = w(t) - L‘; u(t). In other
U'Ll
u 1 0 u u 1 u
words, ( )(t) = [_ )(t), or () (t) = ) (v).
v GUW 1 w W _-l_,l_‘i 1 v
2 2
Gu 01..l
X 1 0
Consequently, (Y)(t) = A * (:)(t) in which the m.s. process
_uw 1
2
cll

(:)(t) is serially and contemporaneously uncorrelated, with the first
element the X innovation and the second element that part of the Y

innovation | to the X innovation. Not only are the convolution matrix

1 0
coefficients A(k) , kel, well-defined in terms of this physically
Suv 1
2
G'Ll

specified basis, they are econometrically identified under the following

19/

(classical) pair of "zero restrictions":—' (i) That the zero order
convolution coefficient be lower triangular with ones on the diagonal,
and (ii) that the covariance matrix be diagonal. To see this, consider

the zero-order coefficient and covariance matrix of any other m.s.

2

1 0 . 0
representation: A(0) T-l, i 2 T'. Only lower triangular
EEE 1 0 o
2 v
Uu

T with units on the diagonal will satisfy (i) (recall that A(0)=I); if

t21 # 0, then the off-diagonal terms (t 2) fail to vanish in the

21 %
transformed covariance matrix, causing (ii) to fail. Of course, had
the Y innovation been retained in the basis (as the initial step of
a Gram-Schmidt orthogonalization) the result would have been an upper

triangular zero-order matrix with diagonal covariance matrix. We call

these normalization conventions III-L,D and III-U,D, respectively (the
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mnemonics L,U are for lower, upper triangular and D is for diagcnal
covariance matrix).

We may now deduce the exactly identifying nature of the
normalizations I1-U and II-L from ITI-L,D and III-U,D (which have just
been shown exactly identified, via I). This procedure involves:
algebraically, normalizing the diagonals of the covariance matrix at
unity and making the corresponding adjustment to the zero-order coef-
ficient matrix; or, gecmetrically, scaling the orthogonal innovations in

(3)(t) so that they have unit variance. In other words, (?)(t) =

1 0 “ 1 0 9, 0 '%; 0 u
A () = A * R ARAE
Yuw 1 uw 1 0 o, 0 —
g 2 7 v
u o
u
‘a0 ou 20/
or again A % , which is in the form II-L.—" The point
uw v LA
Ty
%u

is that, starting from IILI-L, only lower~triangular T will preserve the
lower triangularity required by 1I-L; the diagonal elements wmust be as
above to preoduce unit diagonal in the covariance matrix, and, if t21 £ 0,
as before, the diagonality of the resulting covariance matrix would be
spoiled. Consequently, we have again arrived at the IT-normalizations,
but in a constructive way which has not lost sight of the innovations.

0f the three normalization variants, only the 112 are funda-
mental; how dees this square with the rightful emphasis given fundamental
representations? Since the important part of fundamentalness is mutual

subordination, and all the normalizations were among m.s. processes, it
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is not imperative to adopt the further, arbitrary normalization convention
that fundamentalness carries with it. We have found it helpful in
organizing thought to adopt some normalization and stick with it,
interpreting, if necessary, the results for other normalizations at the
last stage; the alternative, stating results valid for some unspecified
or all possible normalizations, is likely to leave the reader (if not
the author) frustrated and confused.

Finally, we come to define the notion of causality for l.r.
W.S5.8.P. (%)(t). Y is said te cause X if, given past X, past Y aids in
the prediction of current X {notation: Y -+ X). In symbols, Y will
cause X when (X(t)|HX’Y(t—l)) # (X(t)!HX(t—l)). Y is said to cause X

instantaneously if adding current Y helps predict X, given past X and

past Y (notation: Y i X). In symbols, Y i ¥ whenever (X(t)|HX’Y(t-l)U Y(£)) #
(X(t)|HK,Y(t_1))' Since part of Proposition 1 shows that Y i X if and
only if X 3 Y, the notion of Wiener-Granger causality dees not permit
any distinction as regards instantaneous causality; consequently, the
definition is most meaningful only over time. Whether these are the
more interesting causality events depends on one's philosophical bent.
On the necessity of a stochastiec notion of causality, see [4], p. 430;
for a comparison of this definition with other notions of causality, see
the first section of [26].

If we now adopt the normalization II-L (so that (:)(t) is
fundamental--v.w.n. and a linear combination of the innovations—-and

b(0) = 0) then we may state:

S5ims' Theorem 1. In the l.r. w.s.s.p. (ﬁ)(t), Y does not cause X if and

only if the Wold (m.a.) representation subject to II-L is

a

X 0
P = C P *O.
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The method of proof emploved in [241 is direct, uses the
characterizing features of the m.a.r., and cannot be improved upon. A
careful reader of the proof might wonder why the u process, which by
construction is part of the bivariate innovation, is alsc the univariate
innovation for the X process. Since we use both this theorem and this

fact, and the reason illustrates the theoretical importance of viewing

a(z) 4]
c(z) d(=z)

an explanation. The crucial notien is that among matrices-g(z) which

B{z) = ( ) as an analytic function, we cannot resist supplying
factorize the autocovariance function, or equivalently the spectral
density matrix, that matrix which corresponds to the desired fundamental
representation, B(z), has the maximality property B(O)BT(O)_i E(O)ET(O)
where > here means "LHS minus RHS is positive semidefinite." ([17],

p- 60, 61). This maximality notion applies both to univariate and
bivariate factorizations, so if u weren't fundamental for X, there would
be f(z) = g(z) a(z), with g(z) g(z_l) =1 on |z[ = 1, such that Ia(O)]2 >

[a(0)|2 (here a(z)} is a scalar}. Then if we consider a competing

a(2)
c(z) g(z)

det]%(O)l2 = |a(0)|2[d(0)]2 > la(O)[zld(O)lz, contradicting the maximality

B(z) = ( d?z))’ B(z) still factors the spectral density and
of B(z) and hence the joint fundamentalness of (:). It is indeed unfor-
tunate that what is essentially a time domain argument does depend on
frequency domain considerations at this stage, but we can find no alter-
native that is worth the work.

This concludes our background survey and introduction of

notation. It is time to begin work.




IIT. Bivariate Characterizations

We waste no time in putting the machinery developed in the

last section to work in the proof of

Proposition 1. Assume that the l.r.w.s.s.p. (5) has the extended

a b
d

autoregressive representation (e.a.r.) (?)(t) = ( )*(?)(t) +

_Z a(i)X(t-1i)+ ) b(i)Y(t-1i)

TOE N - + () (e) with B ( ) =
(W)(t) S i (W t) wit w(t) u(t)w(t)) =
) c(i)X(t-i)+ ) d(i)¥(t-i)
i=1 1=1
o B
(gu c“g) = Y. Then: (i) Y does not cause X if and only if b(.) = 0;
wu w

(ii) whether or not b(.) = 0, instantaneous feedback (or instantaneous
causality) is present if and only if Uuw # 0, this last result holding
even if no e.a.r. exists, where then (E)(t) is interpreted as the
innovations process in the m.a.

Proof: (i) Assume first that b(.) = 0. Then by the definition
of the a.r. (3)(t)_L Hg,yy (E-1)» so that (X(t)|H gy (E71) = a*x(t) +
0*Y(t). In general, we may form (X(t)|Hx(t-1)) by projecting
(X(t)‘H X,Y (t-1)) onto HX(t—l), a step which is not necessary here.
Rather trivially the two projections are equal, and sufficiency is
established. Now assume (X(t)IH X,Y (t-1)) = a*X(t) + b*Y(t), so that
(X(t)]HX(t—l)) = a*X(t) + (b*Y(t)[HX(t—l)); by hypothesis these projections
are equal. This entails '§1b(i){Y(t—i) - (Y(t—i)[HX(t—l))} = 0. If

i=

b(.) 4 0, we have a contradiction: (Y(t—i)|HX(t—1)) =) hy (1)X(t=3),
j=1
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) h ()X(t=3)] = 0

say, by the e.a.r. assumption, yielding Z b(i)[Y(t-1i)-
j=1

i=1 J
which contradicts the uniqueness of the a.r. since this term may

be added to the R.H.S. of the a.r. with impunity. (ii) To check for

instantaneous feedback-causality, we compare (X(t)|HX(t—1)LJHY(t)) with

(x(t) |n %Y (t-1)) and (Y(t)[HX(t)LJHY(t—l)) with (Y(t)[HX,Y(t-l)). To

_<u(t), w(t)>
T <w(t), w(t)>

compute the former, we first regress u(t) w(t) + v(t) so

g
uw

that <u(t) - 2 w(t), w(t)> = 0, or w(t) | v(t). (X(t)IHX(t—l) U B, (D)) =

W

(X(t) |H 5 (t-1) & w(t)) = (X(t)|H gy &) + (X(t)|w(t)). Thus, the

marginal effect of current Y is to change our forecast of X(t) by

a ag
uw uw
() [w(t)) = (u(e)|w(t)) = ;2 w(t) + (v()|w(t)) = ;2 w(t); the
w w
02
uw
predictive variance is correspondingly lowered by & 2. These effects
w

are zero if and only if Guw = 0, as asserted. The computation for
ag

predicting Y(t) shows that the predictors differ by —E% u(t) and the
02 ou
uw
variances differ by G 2, so that current X is of additional help in
u

predicting current Y if and only if Uuw # 0. The results for X and Y
together establish that instantaneous effects are present either together
or not at all, justifying the term instantaneous feedback. Finally, no
use was made of the a.r. representation in proving (ii), as was promised.
Q.E.D.

A special case occurs when the order of the longest lag

necessary in the a.r. is finite, m, say, and Uuw = 0. Granger called
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this the "simple causal model" and proved (i) of Proposition 1 ([4],
pP. 436), establishing the first theorem in the subject with no fanfare
(the result modestly bears no label whatever). We wish both to emphasize

the importance of his result and to make the following observations:

Remark 1. Although he asserts his result for m=* as well, it appears
that Granger's clever method of proof, which involves examination of
Kolmogorov's expression for the predictive error variance, will not be
easily adapted to this case, because some statements which are '"clearly"
true in his proof are not so clear when infinite products are involved
(although perhaps the introduction of Blaschke products along the lines

of [7], p. 142-3, may be used to advantage).

Remark 2. The fundamentalness of the (3) process and the defining
properties of the a.r. were not stressed by Granger, although uniqueness
of the a.r. certainly must be present for his result to hold. Since as
footnote 17 has observed, the natural sufficient condition (and only one
the author has seen enunciated) for the existence of the a.r. also
implies the existence of the e.a.r., any weakness inflicted by the
e.a.r. assumption is minimal. Further, it is useful to be clear that
the result is not specific to the simple causal model, as is also

evidenced in:

Remark 3. By '"inverting'" the m.a. and taking b(.) = 0 in precisely
those cases where Y does not cause X, the a.r. is found, when it exists,
to have all coefficients of lagged Y equal to zero. Thus, application
of Sims' Theorem 1 yields another proof of the Granger result. Of

course, as our normalization discussion has shown, the a.r. so obtained
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is not necessarily associated with a simple causal model (even when the
a.r. is finite). A justification of this "inverting" procedure, which
was referred to earlier on p. 14 as well, may be found in the second of
the Wiener-Masani references [30].

With the characterization of instantaneous causality in hand,
let us momentarily return to the Sims theorem and observe that i.c.
obtains if and only if c(0) # 0. This is apparent, since the identification-
normalization discussion shows c(0) = gEE; in other words, the presence
of i.c. is thrust entirely into c(.), aﬁd the force of b(s) = 0, all s
consists not in b(0) = 0, which holds by normalization and so is always
possible, but in the ability to take b(s) = 0, s=1, 2, ... .

In a comparison of these theorems, the Sims result has the
advantage of mathematical generality, in that its hypothesis are met for
any l.r.w.s.s.p.; the Granger result, while requiring in addition an
a.r. (or e.a.r.), yields an immediate statistical test. We refer interested
parties to [31] for a discussion of the estimation of multivariate
autoregression; of course, ordinary least squares, comparing X on lagged
X with X on lagged X and lagged Y may be used as well.

Our next result presents another characterization of the

exogeneity of X, which, like the earlier result in terms of the Wold

representation, has the advantage of requiring no additional assumptions.

Proposition 2. In the l.r.w.s.s.p. (ﬁ)(t), Y does not cause X if and
only if (Y(t) [He(t)) = (¥(t) [Hy(=, )).

Proof: We prove sufficiency first, assuming equality of the
two projections. By the characterizing property of (Y(t)|HX(—m, <))

Y(t) - (Y(t)|HX(—m, @)) i_x(t+s), all t and s, and particularly for
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s > 0. Hence, by the assumed equality and stationarity, we substitute,

shift, and define to arrive at nj = Y(t-3) - (Y(t-j)|HX(t—j)) l_X(t+k),

le=]
jil{nj}, we have Nl l_Hx, and a

Il

j=1, 2, ... and all ke€I. If Nl

fortiori N1 l—HX(t) and Nl l_HX(t-l), since by construction each vector
in Nl has these properties. Taking a closure and using the continuity
of the inner product yields ﬁi l_HX(t) and HX(t—l) as well. This gives

us license to write

(x(t) [y (e-1) UN) = (X(e) [Hg(£-1)) + (X(e) [N)).

Since clearly S(X(t-j), Y(t-j), j=1, 2, ...)= S(U X(t-j), Nl)s the
=1

closures must be the same set, which by definition is HX Y(t—l). Thus,
3

(X(t) [y y(e-1)) = (X(0) [Hy (e=1)) + (X(e) [N)).

But (X(tﬂ ﬁi) = (0, since X(t:EHx(t) and we have seen that HX(t) i_ﬁi;glf

In other words, Y does not cause X. Conversely, if Y does not cause X,
we may take b(.) = 0 in the Wold representation by Sims' Theorem 1.
Consequently, X(t) = a*e(t) and Y(t) = c*e(t) + d*n(t); we have argued
that e(t) is univariate fundamental for X(t), so that Hx(t) = He(t).

Now forming the two projections whose equality we seek to establish,

(T(e) [Hy (==, =)) = (cre(t)+d*n(t) [H (~=, «)) = cke(t)
and

(Y() [By () = (che(t)+dn(e) [H (1)) = cHe(t).

The LHS of the expressions above are thus equal. Q.E.D.
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Corollary 1. If in the l.r.w.s.s.p. (?), X(t) has an autoregressive
representation, f*X(t) = e(t), then Y does not cause X implies that Y(t)
can be expressed as a distributed lag on current and past X with a
residual which is not correlated with X(s), past (s<t), present (s=t),
or future (s> t).

Proof: Define w(t) = Y(t) - (Y(t) |HX). Then w(t) | X(s), all
integer t and s, by construction. Using the proposition, w(t) = Y(t) -
(Y(t) [He(£)).  Since (Y(t) [Hy(t)) e Hy(t) = H (t) and {e(s)} 2:500 is a
complete orthonormal set, we have the Fourier representation

s=t
(¥ (t) IHX(t)) = 3 <(Y(t)IHX(t)), e(s) > e(s) = q*e(t),
s=-00
say. So (Y(t)|Hy(t)) = q*£*X(t), and it follows that Y(t) = q*f*X(t) +
w(t). gq*f as the convolution of two, one-sided convolutions, is clearly

one-sided, and w(t) has the desired orthogonality property. Q.E.D.

Corollary 2. The converse of Corollary 1 holds, even if X has no a.r.
Proof: By assumption we have Y(t) = h*X(t) + w(t), say, with
w(t)_L X(s), all t and s. Consequently, (Y(t)|HX(t)) = h*X(t) and
(Y(t)|HX(-m, ®)) = h*X(t). Application of the proposition shows that Y
does not cause X. Q.E.D.
The corollaries taken together provide a doublezg/ strengthening
(and alternate proof) of Sims' Theorem 2. Thus, the Sims test for
exogeneity-—-testing whether '"future" coefficients of h(.) vanish--is an
implication of "Y does not cause X" under the milder assumption that
only X (and not (ﬁ) jointly) possesses an a.r. On the other hand, the

presence of a one-sided f(.), always referring to a population or




- 26 -

theoretical regression, guarantees that "Y does not cause X" without any
further qualifications.

Despite the corollaries and the appealing interpretation of
this result which is available (and given in Section VIII), the main

interest in Proposition 2 lies in its usefulness in proving:

Proposition 3. For the l.r.w.s.s.p. (?), let the univariate innovations

processes for X and Y be e and v, respectively. Then Y does not cause

X if and only if v(t), v(t-1l), ... are uncorrelated with e(t+l), e(t+2),
t =]

...} equivalently, E & Dv(s) l. Z GDe(s).
g=—00 s=t+1

Proof: Using the notation of the proof of the previous

proposition wherever possible,

s=t s=t
(Y(t) [He(e)) = (¥(e)| | @D (s)) = T (Y(t)[D_(s))
g=-—xo S=—00
and
S=o §=00
((t)|Hy) = ()| § @D (s)) = | (¥(t)[D (D).
=00 S==0
Thus
@ ae) - el [|* = § [l )]
s=t+1

by the Pythagorean Theorem. But both directions of the proposition may

now be proved with the aid of
(*) Y(t) | e(t+j) all j > 0 <=> Y(t) | D (t+j), all j > 0 <=>

(¥(e) [ (e+3)) = 0 a11 § > 0 <=> |[(x(e) D (e+i)) [|* = 0 a11 j > 0 <=>

<o

5o llvee) [ ()12 = 0 <=> (¥(0) [u () = (¥(t) |H,) <=> Y does not
s=t+1 € HX X
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cause X, using Proposition 4 at the last step. By joint stationarity,

(*) is equivalent to Y(t—k)_L e(t+j), all j > 0 and all k < 0. Since
s=t 0
H(t) =H,(t) = ] @D (s) and [ ®D_(s) = S(e(t+j), j > 0), the
v v e
=—0 s=t+1
result now follows. Q.E.D.

The scalar process X(t) whose autocovariance function is
2 T=0

RX(T) =q¢-1 T=+4+1, -1 may be used to illustrate a case in which
0 elsewhere

the assumptions of Propositions 2 and 3 are met while the theorems they
generalize do not apply. The reason, of course, is that a process with
moving average representation (m.a.r.) X(t) = u(t) - u(t-1) = (1-L) u(t)
is "widely known' not to permit an autoregressive representation (a.r.)

([28], p. 27; [14], p. 137). The usual evidence supporting this asser-

tion is that the natural candidate for an inverse, (1—1.)-1 =1+1L+ L2 o
n
results in the unpleasant lim E X(t-i) = lim {u(t) - u(t-n-1)}, which
n*® i=0 n>

does not converge. This argument, of course, only proves that one
attempt at finding an autoregressive representation has failed; to show
that all candidates must fail is more difficult but instructive because
the precise meanings of the commonly used terms m.a. and a.r. must be

confronted. This is our excuse for proving in detail the following:

Lemma. The process X(t) = u(t) - u(t-1), u(t) white noise with unit
variance, does not possess an autoregressive representation.

Proof: An a.r. is by definition a decomposition of the form

oo

X(t) = Z a(i) X(t-i) + e(t), where e(t) is the innovation in the X(t)
i=1
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process; also by definition, an m.a.r. is a decomposition of the form

o
X(t) = ) b(i) e(t-i) where, if b(0) is normalized to unity, e(t) is

i=0
again the one-step-ahead prediction error for X(t), or innovation. To
be more specific about the a.r. (to substitute u(t) for e(t)) thus
requires showing that X(t) = u(t) - u(t-1) is indeed the m.a.r. Evidently,
Hx(t)‘g Hu{t); we need to prove that u(t) is not just any driving white
noise process out of the blue, but that it is in the space from which
predictors may be drawn, that it is in the linear manifold generated by
current and past X. To show Hu(t) c HX(t) it suffices to get u(t)ng(t).
We do this directly by producing a sequence of vectors in HX(t), {X(t) - ﬁn},

which converge to u(t) in the norm of HX(t); completeness of HX(t)

then ensures that u(t)EHX(t). We take for Xn the projection of X(t)

onto <X(t-1), X(t-2), ... X(t—n)>;g§/ Writing out the normal equations
N n
yields X = ) c(i1)X(t-i) where the c(i) satisfy
i=1
-1 7 =l O ey
0 -1 2 -1 A

= ) , or d = Ac.

2 ; ; . =1, ; s E
Since A is symmetric, so is A 7; the first row or column may be verified

to be ( nil E;i - nil ) which allows the determination of c. Hence,
o v ntl-i s
X = —-E ( =57 )X(t-1). Now (n+1) [X(£)-X 1 = (n+D1)X(t) + nX(t-1) +
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.. + X(t-n) = (n+D)u(t) - u(t-1) - u(t-2) - ... = u(t-n) - u(t-n-1).
Consequently, || (X(t) - in) - u(t)“2 - ol 7 = nil + 0 as n?> =,
(n+1)

u(t) is thus fundamental for X(t) and hence X(t) = u(t) = u(t-1) is a
m.a.r. But X = (X(t)lHu(t—l)) = —u(t-1) is the optimal predictor of

X(t) using the entire past, leaving prediction error X(t) - X_ = u(t)

with unit variance: This implies

oo

Y d(i)X(t-1)
i=0

mn

(M [|d*X(t)|12 > 1 for any d*X(t)

with d(0)

1 which converges. We use (1) in concluding. Because

Xn + u(t) » X(t) as n > », if an a.r. exists, say X(t) = Z a(i)X(t-1i) + u(t),
n & n i=1

then 1im ) a(i)X(t-1) = 1im X_, or 1im } (a(i) + Eyx(t-1) = 0(#).
. n n+l

nre i=1 n-o nre  i=]1

If a(i) # -1 for some i, let i' be the first such i. We then

; . £ xpy = ’ a-1i. .y n-i'
have, after renormalizing via d(i-i') = (a(i) + n+l)/(a(l ) + ) ),

n
lim E d(i)X(t-i'-1i) = d*X(t-i') = 0, d(0) = 1. Stationarity implies
n+e i=0

d*X(t) = 0, contradicting (*). Thus, the only possible candidate for an

o

a.r. is Z X(t-1i), but we have already seen that this does not converge.
i=1

Q.E.D. As a final tutorial comment, u(t-1l) illustrates two technical

oo

points: u(t-1l)e G X(t-j) but u(t—l)¢ U X(t=j), showing the need for
o j=1
j=1

closures; and u(t-1), while a limit of finite linear combinations of

past X, is not an infinite linear combination of past X.
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By exogenously embedding this X process into a bivariate

system, the desired example may be constructed. Thus, if we take

1-L
1

X 0 u = u
(Y)(t) ( l-L)(v)(t) = B(L)(V)(t),

u . ; 2 " 2
(v)(t) v.w.n. with contemporaneous covariance the identity matrix, then

by the cited reference in Rozanov ([17], p. 88) B(z) is a maximal matrix

is exogenous by the form of the m.a.r., and previous discussion has
established that u(t) is the univariate innovation for X(t), although
v(t) is not the univariate innovation for Y(t). Proposition 2 is illustrated

‘ and (E)(t) thus jointly fundamental for (?)(t). By Sims' Theorem 1, X
| by observing

(Y(t) [Hy (£)) = (u(t) + v(t) - v(t-1) [Hy(t)) =
a(t) = (Y(t)[Hy (-0, =));

u(t) is not expressible by a distributed lag on current and past X, by
the Lemma. The message of Proposition 3 is that current and past Y, which
will be linear combinations of current and past u and v, will be orthogonal
to all future innovations in the X process, i.e., all future u. Of
course, the Y innovations would, if derived, enjoy this orthogonality
property as well.

We conclude this section by commenting on what may be the
independent discovery of Proposition 3 in the unpublished works [8],
[9], and [15]; for specificity, we will concentrate on Theorem 4.2; 7 of
[15], although the idea in one form or another undoubtedly goes back to
[8]. In any event, the proof of 4.2.7 states that, in the moving

average representation

]
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©11(B)  0;,(B)

(%) M) =
v GZl(B) 622(B)

a = =
) (8), 0,,(0) = 0,,(0) = 1,
(B here is our L, the lag operator)

since u(t), a(t), and b(t) are each white noise, it follows that ell(B) =1
whenever Olz(B) is a constant or zero. This is a crucial step in their
proof which, in this author's opinion, represents a lacuna. Considering the

S) =
case where 12(B) 0, let

&) = =D _2 s i s &
11(B) =2 1- 38 B ceel

it is evident that Gll(B), while not the identity, nevertheless maps a
white noise input a(t) into a white noise output u(t): that Iell(eik)fz =1
for AE[0,27] is the easiest way to see this, but it follows by direct
computation as well. Of course, Oll(B) maps a nonfundamental "inmovation"
process into a fundamental innovation process, but since these concepts

are not used in [15], the inference might be that their operational

method of proof breaks down at this point.

If this particular 011(3) is dismissed on the grounds of the
"invertibility" assumption on IW(z)l made earlier, the question of the
burden of proof still seems open. We question here the soundness, not
the validity of the deduction; indeed, Proposition 3 shows that the
result holds without any assumption of "invertibility," i.e., without
the assumption that an a.r. exists. Actually, this point may be

important in practice, if processes are known not to have autoregressive

representations due, for example, to seasonal adjustment procedures.




IV. The Forward Flow of Time; Symmetries and
Asymmetries; Time Reversal

In this section, we consider the effect of what may be termed
time reversal on the Wiener-Granger-Sims notion of statistical causality.
Our finding will be that, while all of the previous theorems have
natural analogues, when time is reversed the property Y-++X is itself
not invariant, except in a special case.

Situating ourselves at time t and considering X(t+1) the
classical prediction problem involved projecting into HX,Y(t)’ because
this space represented the past, the data at hand. If time were '"flowing
backwards" or '"reversed," we can imagine knowing, instead, only the
future, S(X(t+i), Y(t+j), i,j=1,2,...), a family of random variables the
closure of whose span is HX,Y(t+l’ @), and trying to '"'predict" X(t) by
projecting onto HX,Y(t+l’ «), Denoting the latter space by EX,Y(t+l)’
we define "Y does not cause X under time reversal'" (notation: Y E;i' X)
whenever future Y does not help in predicting current X, given future X;
in symbols, (X(t) |EX’Y(I:+1)) = (X(t) |gx(t+1)). As with the usual
definition, the LHS has in general a lower predictive variance because
the projection is onto a smaller subspace; as before, time reversal
exogeneity of X with respect to Y (synonymous with Y E}Ef X) indeed
represents a testable hypothesis. To avoid the use of an awkward
phrase, we will throughout this section describe 'predicting the present
from the future" as "backcasting."

The counterparts to the ordinary, Section II constructs of

prediction theory will be indicated by an underline, to emphasize symmetry,

continuing the precedent of the preceding paragraph. Thus, the crucial




decomposition EX,Y(t) = EX’Y(t+1) ® EX,Y(t) leads, as before, to EX,Y(t) =

Z G_QX Y(s) o Hx Y(m), the latter term representing the infinite

s=t
o

N . i - ;
future,s=ﬂn§X,Y(s), which we define as §X,Y( ). A random variable
contained in BX Y(m) can be backcast arbitrarily distantly, given any

stretch of the future, H (s, «»), no matter how far removed (how large

X,Y
s). From its description, it may be thought that EX,Y(W) = {0} on
physical grounds in most applications; such processes we define as
linearly regular on the future (l.r.f.). Processes for which HX’Y(-m)

and HX,Y(m) both are {0} will be called totally linearly regular (t.l.r.),
and might be considered the rule rather than the exception.

We recall from the discussion in Section II that, l.r. or not,
it was the 1l.r. part of a w.s.s.p. (i)(t) which had a moving average
representation; when it is understood that the structural theorems
concern this part, it is a matter of aesthetics whether the deterministic
part exists or is the zero vector. In other words, the assumption of
l.r. could be made without loss of generality. So, too, it is here,
with both the concepts of 1.r.f. and t.l.r.: we state results for
totally regular processes to economize on words, fully cognizant of the
fact that the result applies to the regular parts of non-t.l.r. processes
as well.

One of the reasons so much background was presented earlier,
and the particular version of the Wold decomposition was given, occurs
at this juncture. Once the orthogonal decomposition of the space

H (£, =) = E ] Eu w(3) & H (w) is available, a reversed version of

%Y s=t

a moving average representation falls out, just as before, by projecting

X,Y

(?)(t) onto an orthogonally decomposed subspace of which it is an element.
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To do this, it is a matter of collecting Fourier coefficients, remembering
that convolutions now extend forward in time, and noting that innovations
now refer to optimal, one-step-behind backcast errors and that mutually
subordinate means HX,Y(t’ w) = Hu,v(t’ «). Incorporating into our

definition of l.r.f. the notion of full rank of the matrix of backcast

errors, we have the, now underlined,

Wold Decomposition Theorem, The l.r.f. w.s.s.p. (X) has the movin
wold ¥ g

average representation forward (m.a.r.f.)

SICE L AG Qe 2 A X()(6), vhere AO) = T, Cov () - L,

X u =l v
A = (0, )DL, and trace ] AG)L A'(-k) < =.
- k=0

u 4 % .
v(t), so that (v) is the innovations process.

EX,Y(t) a-"

Another analogous notion is the autoregressive representation

forward (a.r.f.), which has the form

BA@@® = ] BIOG (EH) = (D (), BO) = T, cov () = I
k=0 = =

where again (E) and (§) are mutually subordinate into the future. And
again, projections are guaranteed to have convenient representations in
terms of convergent infinite sums by the definition of an extended
a.tf: (esa.rofi).

Of course, the same normalization questions and answers arise,
and the previous use of analytic function theory can be carried over to
distinguish a fundamental m.a.r.f. from a nonfundamental one. An immediate

consequence, for scalar processes, is a symmetry between past and future

(which does not extend to vector processes).




Lemma. For the l.r.w.s.s.p. X(t) the one-step-ahead and one-step-behind
prediction errors have the same variance. Also, HX(—W) = {O}=>HX(+m) = {0},
so that l.r. implies t.l.r.

Proof: Since X(t) is l.r., the Wold decomposition yields
X(t) = b*u(t), where we may take Gi=1. Furthermore, ([17], p. 60), b(z)
is maximal among analytic '"matrices'" with components in H, which factor
the autocovariance function: RX(z) = b(z)b(z—l), and [b(0)|2 > [l;(O)I2
for any other factorizing g(z). But X(t) = b* u(t) (the same b(.)
sequence) again represents X(t), because RX(') is a symmetric function.
Consequently, there is no nonzero element in HX(+W) either. And the
maximality condition which b(.) is known to satisfy is precisely that
which guarantees that u(t) is future fundamental. Thus, X(t) - (X(t)lﬂx(t+l)) =
b(0)u(t), Var b(0)u(t) = |b(0)‘2 = Var b(0)u(t) where b(0)u(t) = X(t) -
(X(t)|Hx(t—l)). One-step—ahead and backward forecast errors have thus
been shown equal. Q.E.D.

We remark that the reason this result does not carry over to
vector processes is because the matrix analogue of b(.), B(.), does not
continue to factor R X,Y (.) = B*B'(.), since the latter is not symmetric
in the multivariate case. Although it would take us off the track to
prove it, we claim that a multivariate quantity which is invariant under
time reversal is ]ZI, that is, ]X| = lEJ: generalized variance is
preserved.

It is now a question of substituting analogous concepts in the
straightforward and obvious way to prove the next proposition. We begin

the task where it is instructive, mimicking the proof of Sims' Theorem 1,

from which the Granger result may be quickly derived.




- 36 -

Proposition 4. Let (?)(t) be a 1.r.f. w.s.s.p. Then X is time-reversed
exogenous with respect to Y (Y E@f' X) if and only if:
. X _ 2 0, . u
(i) The m.a.r.f. is given by (Y)(t) = (c d) _'(E)(t)’

i.e., b(.) = 0; where the normalization is a(0) = d(0) =1,

2
o 0
b(0) = 0; Cov (:) =" 5 I3 (the analogue of III-L).
- 0 o
> W
(ii) When an a.r.f. exists, it is given by(& O)f'(i)(t) = (3)(t),
Yy § -

where the normalization is as in (i), III-L.
(1i1)  (¥(0) [Hg(e, =) = (1() [Hp (==, =)).

(iv) e(t),e(t-1), ... are uncorrelated with v(t+l), v(t+2), ... ,

where Y(t) M * v(t) and X(t) = a * e(t), u(0) = a(0) =1,
are univariate m.a.r.f.'s.
Proof:

(i)<=: With the given m.a.r.f., X(t) lies in ﬂu(t). By definition
of m.a.xr.f., BX,Y(t) = Eu,v(t)’ and the earlier remarks in
Section II show that BX(t) = gu(t), or else, by an analagous
maximality argument, the mutual subordination of the (?) and
(3) processes would be contradicted. Now forming the projection

oo

(X(t) [Hy ¢(t+1)) = ) a(t)u(t+i)), we note that this is in

> i=l
Ex(t+l)s and hence equals (X(t)[ﬂx(t+l)). Consequently,
future Y do not help predict current X. =>: Assuming now the

equality of these projections, and our definition of Y E+£' X,

we may now write

(4.1) X(t) - (X(t)l_l-_l_x,Y(t+l)) = X(t) - (X(t)|Hy(t+1)) = u(t)

(4.2) Y(£) = (Y(e)[Hy y(e+1)) = u(t).
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w(t), u(t)>

Now we define v(t) = w(t) - u(t) so that v(t) L_Eﬁt),

<u(t), u(t)>
and, of course, v(t) l_gﬁs), all t and s by the construction of the
projections (cf. Section II, and remarks around the Wold
decomposition). Thus, (u(s), v(s), s=t,t+l,...) form a
complete orthonormal system, EX’Y(t) = Eu,v(t)’ and taking
Fourier representations of X and Y yields a representation of
the lower triangular form. Q.E.D.

(ii) By inverting the m.a.r.f., the a.r.f. is obtained, when it
exists. Since lower triangularity is preserved, the result
follows. Another proof is available by mimicking that of
Proposition 1.

(iii) and (iv) follow from Propositions 2 and 3, again by making

the obvious replacements. Q.E.D.

A symmetry carries over to time reversed processes in the
sense that, if Y ELE' X, then the analagous results hold, and conversely.
However, it quickly becomes apparent that Y-4+X does not in general hold
up under time reversal, except in the special case where (Y(t)|Hx(-w, @) )

is in S(X(t)), as we prove for totally regular processes in

Proposition 5. Let (g) be a t.l.r.w.s.s.p. Then if and only if (Y(t)fHX(—m, ) )
= k. X(t) does Y4 X imply Y 5. X. The result remains valid when

Ciwilie ; : -1 :
Y-F*X and Y - X are interchanged. 1In this case, when a ~(.) exists,

the m.a.r.f. and the m.a.r. may be expressed with the same coefficients:

4.3 @O =2 Do =2 DrOm,
2 0 -
where a(0) = d(0) = 1, Cov()(t) = " , |= Cov (()(t), and k=0
. 0 o -
«C. w

if and only if X —°$° Y.




i GB o

Proof: While the first two statements follow immediately from
Proposition 4 (iii) and Proposition 2, they will also follow from the
proof of 4.3. Indeed, since Y~F+X, a III-L normalized lower triangular

representation exists:
X _ ,a 0,,,u
(P = E PO .

For Y EFE' X to hold, there must also be such a lower triangular repre-

sentation on the future, (?)(t) = (2 ?)ﬁ(i)(t), where we have used a

fact encountered in the lemma: the same a(.) must be present in both.
But writing out the cross-autocovariance RYX(') for each of the repre-
sentations, we see that,

c(L_l)a(L) i

e(L),
B

c*a' = e'*a, or, in terms of lag operators,
]

using the assumption that a_l(.) exists under convolution. Now in this

last equality, the LHS must contain no terms in L_l (since a(0)=1);
consequently, c(L_l) = k.a(L_l), or c(.) = ka(.). The statement about

i.c. is part of Proposition 1 (ii). The regression convolution coefficients
of (Y(t)]HX(—m, ©)) may be computed in this case as (a*a')_l*ka*a' = k.8§(.).
Joe(.) = ¢e(.), and R, = c*¢'" +d+d'=e+e' + f+ f' entails

d*d' = f*f'. Maximality ensures d=f. Q.E.D.

Corollary. When Y-%*X and (?) is a t.l.r. w.s.s.p., a prognosticator
desiring to predict X(t) and, given the choice between the future

EX Y(t+-l) and the past H (t-1) will always choose the future, although
]

X,Y
he may be indifferent.
2
Proof: Since X is exogenous, if X(t) = a*u(t), Gu=l, by using

only past X and by using only future X, the predictive variance has been
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shown to be same: [3(0)12. But this is also the mean square error when
using past Y as well. Thus, future X allows as accurate a forecast as
past X and Y, so future X and Y can do no worse than past X and Y. 1In
the case of Proposition 5, it does only as well; in all other cases, the
m.a.r.f. is not lower triangular, and the future will in general dominate

in these cases. Q.E.D.
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V. Multivariate Propositions

To perform the extension of the concepts of the previous
sections to n dimensions, we write (the only occasion in this paper
nxl nxn nxl
where X represents a vector) the l.r.w.s.s.p. X(t) = A * e(t), He(t) = Hx(t)
for the m.a. and B * X(t) = e(t), He(t) = HX(t) for the a.r. (where it
exists). Since the underlying mathematics (prediction theory) is
available in the sources mentioned in Section II, the previous bivariate

proofs may be adapted to prove results where bloc-triangularity replaces

triangularity. From a technical point of view it is the fact that

A(0) O
€c(0) D(0)

matrix factorizations to be again used with the same advantage that was

det( ) = det A(0) det D(0) which allows the theory of maximal

explained on p. 19. Since bloc-triangularity is preserved under convolution
and matrix inverse, we expect and find the same qualitative results

present in the bivariate case. A special case occurs when one of the

blocks on the "diagonal" is a scalar: we indicate this by writing X,

X

for a scalar and Xl for a vector. If X = (Xl) where X1 is 1x1 and X2 is
2

(n-1)x1, then we say, as before, that X is exogenous w.r.t. X, if

Tl — =3
(xl(t)|Hxl(t 1) sz(t 1)) and(xl(t)[Hxl(t 1)) agree, or, Xz does not
cause (help predict) Xy (notation: X2-++xl). Now a new concept emerges: it

may be that X doesn't help in the prediction of some or all elements of

XZ' In the latter case, when (Xz(t)Isz(t—l)U Hxl(t—l)) = (Xz(t)IHXZ(t-l)) we

write x1+a-X2.
The general notion, of course, is the relation "does not

cause," indicated by 4+, which is defined as in the last sentence but

nlxl nle —

with Xl and X2 representing different subvectors of X, where ny + n, < n.

We understand this interpretation in the sequel. Since X1-++X2 means
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nlxl nle

that no component of Xl helps predict any component of XZ’ the symbol

Ix1  1xl
+ refers to n,.n, elementary causality events of the form X, B X

To characterize these latter events, the a.r. is the more convenient, as
Proposition 6 (i) shows. However, in describing results involving one
component, say X5 and (XZ’ i xn)T = XZ’ the rest of the system, the
a.r. and m.a. again have the same qualitative appearance, if a relation
++ is present, as in the bivariate case; here, however, both upper and
lower triangular representations have an obvious interpretation. We
choose the natural parameterizatiom, in which A(0) = B(0) = I below,

deferring any discussion of instantaneous causality until the next

section. We record:

nxl nxn nxl
Proposition 6. For the l.r.w.s.s.p. with m.a. X(t) = A * e(t),
1x1 1x(n-1)
T T T
e.a.r. B * X(t) = e(t), and X = (xl X2 Y 3

(i) xi-F+xj if and only if bji(') = 0 in the e.a.r.
(ii) X2-++xl, or x; is exogenous, if and only if either of the
equivalent conditions hold:

0 in the e.a.r.

@ (b, () =+= by ()

n

(b) (alz(.) .o aln(.)) 0 in the m.a.

(iii) xl-F+X2, or x; does not cause any other variable in the system,
if and only if either of the equivalent conditions hold:

(@) /by () (b) /a2, ()

I
o

p . =0
bnl(') anlc') n,xl
1x1 1

(iv) In the results (ii) and (diii), x, may be replaced by X

m-1)xt ¥

X, by X,, (nn

l 3

9 = n) and the conditions (a) and (b)



)

o B e

by the upper right and lower left matrices in the conformably
partitioned e.a.r. and m.a. representations.

Propositions 2 and 3, on one-sided projections and zero
correlation of future Xl innovations with past and present X

innovations, remain valid when interpreted as in parts (ii)-

2

(iv) of this theorem.

Proof: All parts may be tediously demonstrated by repeating

previous arguments with scalars replaced by vectors. Part (i) is

proved in exactly the same manner as part (i) of Proposition 1.

The only new features are: recognition of the supremacy of

the e.a.r. for the characterization of basic causality events in terms

of zero lag distributions; the observation of an interpretation for

zeros in the lower left blocks; and the choice of the particular para-

meterization to simultaneously allow the statements (ii) and (iii).

We will make use of this proposition in interpreting the

results of the next proposition.
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VI. Trivariate Systems and Bivariate Causality;
Notions of Instantaneous Causality-Feedback
In Section II we remarked that all of the mathematical complexities
of general, q-variate prediction theory are present for ¢=2. This does
not mean that statements made as if the universe were bivariate will
necessarily retain their wvalidity when embedded in the natural way in a
higher dimensional setting. Indeed, the presumption has been that
findings of bivariate systems will generally be found spurious, and
consequently overturned, when referred to the properly specified, larger
system. Here, we propose to venture beyond the safety of the truism
that "in general, everything depends on everything else" and to investigate
what can go wrong {(and right) in the simplest system of dimension higher
than two. It is hoped that the inelegance of the brute force method

applied here will be at least partially offset by the usefulness of the

results.
The first question addressed is, if Y does not cause X in the
X
trivariate system | Y |, but the investigator instead examines the exogeneity
Z

of X in the system (?), when will this implied bivariate system inherit
the exogeneity of X? By giving a set of conditions which are necessary
and sufficient, and by answering the same question when, in the trivariate
system, Y causes X, an exhaustive classification of all possible inter-
actions is achieved: this result may help the researcher who has some
fragmentary knowledge of the direction of flows of causation between
potentially omitted time series and the series he is modeling.

We will cast our main result in terms of a wvariant of the

autoregressive representation, a normalization analagous to III-L in the
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m.a.r. The reason is that, as Proposition 6 has shown, ''zero restrictions"
on these parameters are easiest to interpret directly as causality
statements; an added advantage is that the a.r. is more familiar to
econometricians than the m.a.r. Logically prior to the normalization
are notions of instantaneous causality; intimately related to any
particular parameterization is the manner in which instantaneous causality,
if present, will manifest itself.

Perhaps the most natural definition of instantaneous (trivariate)

1,

causality is to say Z(t) causes X(t) instantaneously (notation: Z -5 X)

if and only if the error in predicting X(t) given Y(t) and all past X,

Y, and Z declines when Z(t) is added; equivalently, in symbols, if

6.1) @) [Ey y (EDUE) # &) [y (EDUIEUZO).

Alternatively, we might delete Y(t) from the previous definition, and
i

define Z —%—X as occuring when the addition of Z(t) to H (t=1) helps

X,Y,Z

lower the predictive variance: in symbols, if

(6.2)  (X(0) [y y ,(e-1)) # (X(2) [y y (DU Z(D).

As in the bivariate case, both relations are symmetric (that is,

il (or iz) il (or 12)
X —= Z if and only if Z = X). Consequently, the
i. (or i2)
notation X > Z is now adopted. And, as in the bivariate case,

the covariances between X and Z provide a handy criterion:
Ly L
gy # 0<=>X <+ Z and Ox7.y # 0<=>X <> Z.

The technique of proof is the same as was used in Proposition 1,

(ii), so the treatment here is terse. We take the e.a.r. to be




X
B*(Y)(t) = e(t), B(0) = I, Cov e(t) = E. Since the forecast error of
Z
X(t) given the past is el(t), and ei(t) l'H

X,Y,Z(t—l)’ i=1,2,3, adding
Y(t) is equivalent to adding ez(t). The second moment of the error from
forecasting with the LHS of (6.1) is the variance of el(t) - (el(t)lez(t));

from the RHS, the mean square error is the variance of el(t) -

(el(t)]ez(t) Ue3(t)). Solving for the two indicated projectionms, el(t) -

o] o o,.\-1 ©
12 22 12
E“—'ez(t) and el(t) - (ez(t) 93(t)) (0 023 (0 ) = el(t) =
22 32 33 13
1 s O =0 OF
(e, (t) e, (t)) —— 33712 32713 . Thus, it is clear that,
2 3 00s0an=0,2 \"923%12%%2013
22733 723
i
i A 118 i3 L .
Z X iff Cof 0, = # 0. Analagously, X <« Z iff, since the
a, g
22 23
1 %22 Cr2\.%s1
projection is e, (t) - (e,(t) e, (t)) ——— (7)), Cof o, # 0.
1 1 2 B ) 2 —021 Oil 032 13
11722 712

i
The symmetry of E thus entails symmetry of < . As in the bivariate

i
case, Z +; X if and only if 612 # 0, as a computation above shows;
i
symmetry of E thus extends to 4 . Only in the case where 012 Opq = 0

i i
will there necessarily be agreement between 3 and <> for X and Z, although

a.e. (lebesgue) in the space of positive definite E matrices it will be
the case that i; <=> i% .g&!

We now proceed to derive a normalization of the a.r. (or
e.a.r.), which is analagous to III-L,D. This particular normalization
will be found convenient in the proof below; further, we sketch its
derivation to understand the meaning of certain zero-order coefficients

being zero or nonzero; information about both variants of i.c. will be

seen to be present. If the e.a.r. is
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Il
ol

X By By & X bl
Y |(t) 9 b2 c, *|Y |(e) + e, (t)

(Z 7
1
where Co e, t)
e
o L3

a3 b3 c3 e3
(e.g., E al(i)X(tﬂi), etc.), then we: retain the first equation;
i=1

E, and all terms in the convolution start at i=1

replace the second equation, (Y(t)]HX ¥ z(t—l)) + ez(t) by

(Y(t) [0 (t-1) UX(t)) + e,(t) where e, (t) | Hy o ,(t=1)U X(£)U ¥(t);

>

and, replace the third equation by (Z(t) |H (t-1)U X(£)U Y(t)) + EB(t)’

X,Y,Z

where 33(t) l_H (t=-1) UX(t) UY(t). The reader who has pursued

X,Y,Z
matters to this point should not be confused by the presence of the same

lower bars that denoted backwards innovations in Section IV; further, he

will have no trouble showing that:

X(t) 0
a
6.3 (o || F=xo |+
11
Z(t) rlX(t)+r2Y(t)
a; b, ¢y X gi(t)
a. ag a
a,= 21 a; bz— 21 bl Cy= —gl-cl | Y [(t) EQ(t)
i) 911 911
a,-ria,-r,a, b3—rlb1-r2b2 Ca=T ¢ 7T, C Z Eﬁ(t)
L L
1 ~ Cof 033 2 Cof O33

This is the parameterization we adopt; it seems reasonable to name it
III-L,D, although it is autoregressive rather than moving average in
nature. By bringing the contemporaneous vector on the RHS into the

matrix convolution, new convolutions are naturally defined; e.g., the
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coefficient on X(t) in the second equation might be named 22(5), 5=051; oo
9o Ya1
and a,(s) would be —— for s=0, a.(s) - — a,(s) for s=1,2,..., etc.
=2 11 2 911 1

No confusion will arise if we drop the _ and reuse the previous notation:

ajs8yseee Hence, what is important to notice in our final representation,

X al bl cl X el
= *
(6.4) Y | (£) a, b2 ¢y Y | (£) + e, (t),
Z a3 b3 c3 YA e3
02 0 0
el 1
2
Cov( e, |(t) = Y, =| o o, 0 ) b(0) =c (0) = ¢,(0) =0,
e 2
o]
3 0 0 3
0] Cof O -Cof O
21 13 23
is that a,(0) = — , a,(0) = , b,(0) = Consequently,
a o ag
2 11 3 Cof 33 3 Cof 33
1

the assumption az(.) = 0 rules out X «++ Y, while the assumption hl(.) =0

does not have any implication for instantaneous causality. Similar
i

statements hold for a3(.) = 0 and cl(.) = 0 regarding X - Z; and for
il
b3(.) = 0 and c2(.) = 0 regarding Y <> Z.

We now begin a development which might be properly termed the
beginning of the proof of the next proposition. The first observation
is that the m.a.r. with normalization III-L is obtained when (6.4) is

rewritten, with 1 denoting the identity convolution, as

o b c X 1-a -b -c X e

1 1 1 1 1 1
-1 2, B c, ¥l Y (&) = -a, l-b2 -c, ¥ Y |(t) = e, (t)
a3 b3 Y Z -a, -b3 l—c3 Z e3

and inverted (under convolution) to
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X By~-c2b3 c1b3-blY blcz-clB e,
-1
o * = = %
(6.5) Y J(t) A Cyas=a,Y oy-cja, ¢ a,-ac, e, ()
Z a2b3~ 335 blaB—Otb3 O.B—bla2 e,

-1 . ; .
where A = is the inverse under convolution of A,

A= @By +bjcya, +.¢ a.by = c B2, ~acyby - biayy,

and in the last two expressions, convolutions have been juxtaposed
without benefit of *, e.g., By - c2b3 might have been tediously written
B¥xy - cz*b3, etc. We emphasize that (6.5) in a variant of the (Wold)
m.a.r. which always exists. Now the general formulae of Section II may
be applied to find the own and cross autocovariance functions between X
and Y, RX(') and RYX(')' Finally, exogeneity of X in the bivariate
system may be investigated by checking the lag distribution of

0
(Y(t)IHX(—“g ®)) = E pu(i)X(t-i), say, to see if it is one-sided on the
- 00
past. Without any "zero restrictions'" on the individual lag distributions,

i.e., specifications that ai(.), bj(.), or ck(.) vanish identically, we

will have

-1 2
. & - = * L} T_.. 1 1
(6.6) u(.) =Ry Ry () [ (By: c,b)* (Bly'-c,b3)0 +
(c,b=b Y)*(c!bl=blY' )02 + (b,c,—c,B)*(blch-c!B)o21™L *
173 ~4 173 54 2 172 "1 172 71 3
2 2
- * Wi a'h! ) i o Y il S
[(cyaz-ay)*(B'y'—c b3)oy + (ay-cjaz)*(eyby-biy")o, +
2
- kfhVatlo tot
(cla2 &cz) (blc2 clB )03].
While it is conceivable for u(.) to be one-sided on the past
without any of the individual lag distributions vanishing, the possibility

of this happening brings to mind the notion of identification by, say,

zero restrictions in classical econometrics: parameters are so identified




e

(often loosely stated, a.e.--almost everywhere-—in the parameter space)
only on the condition that other parameters, thought not to vanish, do
not, in fact, vanish. So it is here: we will say M(.) is two-sided in
general (or, two-sided) whenever U(.) will be two-sided except for a
meager subsetgé/ of the possible choices of parameter values. All such
statements in the sequel will be subject to this qualification. Also,
we will say p(.) is one-sided under a class of restrictions only when it
is one-sided for all elements within the class.

We now offer an argument that, in the general case, where
bl(.) i 0 (Y » X in the trivariate system), U(.) will be two-sided; and,
moreover, U(.) will remain two-sided under any and all additional
assumptions of the zero restriction variety (each of which correspond to
causality events, as did bl(.)). Indeed, the reader who is not convinced
from the sight of (6.6) that u(.) will be two-sided in general might
consider expressing the convolutions as z-transforms, replacing transposes

by z ©, and considering the case where all lag distributions are generated

by ratios of polynomials. Let, say, RX(Z) = A(z)A(z_l), where A(z) =

P. (2)
“l"“ry and let the sum of terms which represents RY (z) be factored as
Q, (2) X

&5

)

PZ(Z)P3(Z_

1 where these factors are uniquely determined up to a

Q,(2)Q,(2" _ _
= 0, (=) @ (=) P, ()P (=)
1) 2 (™ o, (0,=7h)

constant. Then u(z) = , so that p(.) is

one-sided on the past only when an incredible matchup of zeros of the
polynomials occurs so that Ql(.)P3(.) = k.Pl(.)Q3(.), k some constant.

This is precisely the kind of event excluded by the previous discussion.
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It is also the case that the situation does not change when
lag distributions which may be set identically to zero are so set.
Indeed, assume cl(.) = cz(.) = az(.) = 0. In this case, (6.6) simplifies

to
(6.7) u(.) = =[b,ybly' o + o? BYB'Y']_I(OﬁYb'Y')
> : 1121V 9 1 L

Now, note that, since bl(O) = 0 by the normalization, after bringing yy'

out of the inverse, we are left with (b h'.UZ

2 |_l .
1P1+9, + Ul.BB ) ~, which will

not be of the form const (blbi)-l. So even in this special case, which
simplifies U(.) as much as is possible, when bl(.) $ 0 the result is a
two-sided bivariate regression.

There is one instance related to the general argument that
(6.7) must be two-sided, which shows two-sidedness to be the case
without allowing the possibility of even a chance cancellation. This

follows from the

Proportionality Factorization Lemma. Let a(0) = d(0) = 1 be a normalization

of the one-sided, lz, rational sequences a(.), b(.), c(.), d(.) (that

is, a(s) = 0, s < 0 and z |a(s)|2 < © and similarly for b, ¢, and d).
s=0

Assume further that a-l, (a*a' + b*!:o')_l exist in 22 and (Z): the zeros

a(Z) b(z) . . = Jeo T %! = kfa'x L
of det(c(z) d(z)) lie outside [zl 1. Then (a%*a' + b*b') (a'*c + b'"*d)
is one-sided if and only if (P) k.a(s) = b(s), all s > 0. (k may be

zZero.)

Proof: Sufficiency is straightforward: Under (P),

1

l+k2

(a*a' + b*b')_l *(a'*c + b'*d) = [(l+k2) a"‘r:l']_l *a'(ct+k.d) = (

) .a*(ctkd)
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which is one-sided on the past. Necessity is less evident, since it
seems possible that k.a(.) ¥ b(.) and yet fortuitous cancellation at the
negative lags might still yield one-sidedness. To see that this is not
possible, define the process (?)(t) = (i 2)*(2)(t). By the assumptions
on a,b,c,d, (E), if taken as a white noise process, not only defines an
(?) process, but is fundamental for it provided the condition (Z) is
met. (Since (ﬁ) has a rational spectral density, this follows from
Remark 2, p. 88, and Remarks 1-3, p. 62 of [17]; this is a "deep"
result, although universally not appreciated as such, involving the
relationship between maximal functions and fundamental representations.)

Then, since all fundamental representations must be of the form (?)(t) =

a b

% pr (L)
(c d)P P'( ), P orthonormal, we must have a(s)p11 + b(s)p21 and

n(t)
a(s)pl2 + b(s)p22 in the top row of such a representation. But fundamental
or not, the general formula for the two-sided projection (Y(t)lﬂx) is
RXXf *RYX and, since this is one-sided, by Sims' Theorem 2, (or Proposition 2)
Y does not cause X. Application of Sims' Theorem 1 guarantees that
a(s)p12 + b(s)p22 = 0 for some P1gs Pyos which contradicts the hypothetical
lack of proportionality. Necessity, and therefore the result, follow.
Q.E.D.

Of course, there will be cases of rational lag distributions
a(.), b(.) e(.), d(.) for which the determinental condition does not
apply, but even in these cases, only for certain small sets of exact
linear relations among the coefficients will the resultant HU(.) be one-

sided. We have now proved half of, and essentially given the crux of

the argument used in the converse of, our last result.
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Proposition 7. Let the l.r.w.s.s.p. {Y | have the extended autoregressive
Z
X a; by o X |
representation (e.a.r.) [ Y |{t) = a, b2 c, 1Y Kt} + e, {t), where
Z Z
33 by ¢, ®3

the error covariance is diagonal and we have normalized by setting

bl(O) = cl(O) = c2(0) = 0 and, of course, al(O) = bZ(O) = c3(0) = 0.

Then Y causes X (bl(') § 0) implies that Y causes X in the implied

bivariate system (?). Conversely, if Y does not cause X in the {ecorrectly
specified) trivariate system (bl(.) = 0) then Y does not cause X in the
corresponding bivariate system (?) in the following cases: (i) cl(.) = 0, or,
(ii) cz(.) = b3(.) = 0. In case neither of these conditions hold, omitting

Z will induce spurious causality from Y to X in the implied bivariate

model.

Remark 1. The intended interpretation of the notation is, for example,
in (i), when cl(.) Z 0, the remaining lag distributions may or may not
be zero. Causality requiring the very particular form of autocovariance
sequence that it does, the first part of the proposition should come as
no surprise; lack of causality in the trivariate system cannot, even
with the aid of an imaginatively chosen set of further zerc restrictions,

produce spurious causality in the bivariate system.

Remark 2. Using Proposition 6 and the above discussion on instantaneous
causality and normalization to translate the zero restrictions into the
equivalent causality statements, we may paraphrase the converse to say

X
that, when Y-f+X relative to (Y), Y 4> X relative to (i) if and only if
z
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at least one of the additional conditions prevail: (i) Z-f+X; or

i
(ii) Z—f+Y, Y-++Z, Z 4; Y. As a check of both our intuition and the
plausibility of the result, we observe that a very special case occurs

i
when (i), (ii), X-F+Z, and X +§ Z all obtain. Here o,, = 0 as well,

YZ

and Proposition 6 ensures that the trivariate Wold representation is
bloc-diagonal: the Z and (?) processes are orthogonal. The conclusion
that trivariate exogeneity carries over to the bivariate system under all
these assumptions comes as no surprise. The point of the converse of
this proposition is that it specifies the extent to which these restrictions
may be relaxed, in terms conditions which are individually sufficient
and jointly necessary. The conditions (i) and (ii) generally have a
natural interpretation as a Theil-like omitted variables theorem in
Hilbert space. Indeed, as in the proof of Proposition 1, if we project
X(t) first onto HX,Y,Z(t-l)’ then onto HX,Y(t_l)’ we get

o

x(e) [y y(e=1)) = ]

a, (DX(t-1) + [ b (D)Y(e-1) + ]
i=1 i=1 i=

¢, (1) (z(e-1) [Hy 4 (e-1)).
=1

Since we hypothesize bl(.) = 0, and the Granger criterion (Proposition 1)
tells us that all coefficients on Y(t-i), i=1,2,... must vanish, the

last term tells the story: cl(.) =0 is (i), or Z{*‘X——the omitted

variable didn't enter the true relation; if cl(.) * 0, but
6D (Z(t—i)|Hx’Y(t—l)) - (Z(t—i)1HX(t—1)), all i=1,2,...

X will still be exogenous with respect to Y in the bivariate system.
This latter condition might intuitively be read "the coefficients of the
auxiliary regression, of omitted (Z) on included (Y) variable, vanish"
and this latter projection equality thought logically equivalent to

i
-
condition (ii) Z+*'Y, Y+*'Z, Z < Y. Indeed, the proof of Proposition 7
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provides more than casual support for this view. Actually, we have
already seen a special case of the equivalence of the conditions (dii)
and (T) in the case (iii) discussion; we postpone a formal statement of
this equivalence, which appears important and interesting in its own
right, until such time as a more straightforward and elegant proof can

be given.

Remark 3. The proof given so far, and to be continued, is by brute
force, examining all possibilities in the trivariate e.a.r., computing
the implied two-sided projection (Y(t)lHX(-m, ©)) and checking to see if
it is one-sided. The e.a.r. assumption obviates the need to use Proposition 2,
as Sims' Theorem 2 is in force. An alternative strategy might try to
find the implied, bivariate Wold decomposition from the trivariate
e.a.r. or its inverse, the trivariate m.a.r. Factoring the implied (?)
autocovariance function is then necessary to make any progress, and this
appears a theoretically intractable problem. Were it possible to make a
statement such as, "the factorization cannot be lower triangular" then
Sims' Theorem 1 could be used. The technique employed here gets around
this difficulty. As will be clear from its study, the sufficiency of

the conditions is much more straightforward than their necessity.

Remark 4. It is interesting to note that, from the point of view of

this result, there is some reason to favor the first definition of
i
instantaneous trivariate causality because & does enter into the

statement of condition (ii).

Continuation of Proof. For the converse, we maintain bl(.) =0, and

consider the three cases in order:
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(i) When cl(.) = 0 as well,

(6.8)  u(.) = [(By-c,by)*(B'y'=e,bYos1 " . o -

(czas—a2 v) * (B'Y'-Cébé)

_ -1 " ; i
i.e., pu(.) = (SY-czbS) * (c2a3-a2'y), which is one-sided,
regardless of whether @(.), B(.), or y(.) are concentrated at

zero (equivalently, al(.), bz(.), or c3(.) vanish).

(ii) When c2(.) b3(.) = 0, then
2 2.-1 2 2
(6.9) ud.) = [Byﬁ'y'.cl + clsciB'.cg] (—azYB'Y'Ol - clazciB'GB),
or, again,
A e 2 2.-1 2 2
u(.)=-g lg' 1(W'crl + clci03) azs'(w'cl + ClciOB)’

and finally,

p(.) = —3“132, which is one-sided. Again, whether B(.) =
bz(.)—ﬁ, 0(.) or y(.) are multiples of the Kronecker delta,

8, is irrelevant.

To show the necessity of these conditions, we must argue that, in all

other cases, except for the occurrence of a cancellation of zeros, u(.)




- 56 -

will be two-sided. By making statements conditional on al{.), bz(.),

c3(.) not vanishing and since bl(.) = 0 has been maintained, 29 cases

have been held to a manageable 25, of which 20 have been considered.

The observation that the conditional statements were actually unconditional
has cut down our effort and yet cost no generality. We group the

remaining 12 (conditional) cases as:

(a) bi() Zey(e) =05 by(e), ¢y () ¥ 0, a,(.), az(.) anything.
Here, u(.) = (BB'"yy' & # e belbre + e Bc'B'Gz)-l
> e M LTS IS TR e

- 112_ Il|'2' 1|2_ tpt 2
( Ya,y B -0 clclb3a302 + aYcleOZ clclﬁ a2.03

Conditionally or unconditionally, the term which represents RXX-l(')

will, under these assumptions, not be able to cancel the primed terms in

Ryy ()

(b) by () by () 205 ¢;(0), (L) ¥ 0; a,, a, anything.
_ ek y 2 v 2.1 .2 _ . 2
Here, u(.) B " (yy -0) + clcl'oﬁ) [c2a3Y Gi YY 32.01
v, 2 Vo2
€1¢13,505 +-uc2cl.03].

Since cl(.) $ 0, the first term must factor into something proportional
to neither Y(.) nor cl(.). Hence u(.) is two-sided here, even under all

assignments to a(.), B(.), and v(.).

(c) bl(.) =0, cz(.), b3(.) } 0; a,, a anything.

3
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= - - T 2 ' L] ot 2.-1
Here, 1(.) = [(By = ¢,b)*(By - c,by)'d) + clclb3b30§ +c felB'.00]

2 2
[(cza3 - aZY)*(BY - 02b3)'.01 + (ay - cla3)cib§.02 -+

—(cla2 - acz)*(clﬂ)'-cr§]

which is as two-sided as can be! Q.E.D.
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VII. BRemarks on Applications in Eccnomics

The interpretations of findings of exogeneity in economic data
is a delicate and unsettled matter, even at the theoretical level, as
recent contributions by Sargent [18], [19], and Sims [26] show. At the
very least, owing to the sheer unlikelihood that two economic time
series stand in a unidirectional causal relatioaship, such phenomena
represent facts for theory to explain.

More fundamentally, however, the notion of a "structural
relation invariant to manipulation of controlled processes which enter

it" or "an intervention into the system,"

which represent causality in
the everyday usage of this term, must be distinguished from causality in
the Wiener-Granger-Sims sense. That the two concepts are logically
distinct is an important message of [18], in which money creation causes
hyperinfilation in the "intervention'" sense, yet hyperinflation causes
money in the sense of this paper.

Nevertheless, in an important class of cases there may be not
only consistency, but a mutual reenforcement, as the following inter-
pretation of the money-income example shows. Suppose that money causes
income, but not conversely (as found in [24]). Let vy = a * vy +b *m+ u
and m = ¢ * m + v represent the projections. The "intervention" sense
of causality means finding a stable relation involving y and m which
allows the computation of y whenever an m process is inserted in it.
Provided the coefficients a and b are invariant to changes in the m process,
the first equation will be such a structural relation, which will yield

y = (l-a)_1 * b *m+ (l—a)_1 ¥ u. While both variants of causality

are present, there are two caveats. First, the empirical finding of
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causality during a sample is no guarantee of the invariance of a and b
to changes in regime, as the "rational expectations'" literature has
emphasized. Second, if the second relation were replaced by
m=c*m+d*y+ v but the first relation remained invariant to
"interventions" which violate the second equation and determine m, then

again the concordance is spoiled, since only the causality in the
"intervention'" sense would be present.

From another point of view, to the extent that the results
presented here involve innovations and optimal prediction (a form of
optimizing behavior), they are likely to find use in, and enter structurally
into, any theories in economics where stochastic elements enter in an
essential way. Since the Hilbert spaces projected onto have the natural
interpretation of information set, the possibilities for applications
are virtually unlimited.

Finally, from an econometric point of view and as emphasized
originally in [24], efficient estimation techniques (which are asymptotically
the equivalent of generalized least squares) for a regression of Y(t) on
X(t), X(t-1), ... require exogeneity of X precisely in the sense of this
paper. Thus, the propositions here may be of interest solely on econometric

grounds.
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VITI. Conclusions and Comments on Future Research

Since the introduction offers a summary statement as well, we
confine ourselves here to a very hrief paraphrasing of the results.

First, a minor generalization of Granger's first causality
result is given in Proposition 1. The technique of proof is one which
naturally allows the treatment of the more general cases of statistical
causality in multivariate time series, the subject of Proposition 6,

Two characterizations of exogeneity in bivariate, or block-
bivariate, systems are given next. In Proposition 2, it is demonstrated
that the exogeneity of X with respect to Y is equivalent to the statement
that future X be of no additional help in predicting current Y, given
only current and past X. Despite its statement in prediction language,
which brings to mind the original causality definition, a special case
of this result yields Sims' important Theorem 2. Proposition 3 presents
a characterization for X being exogenous in terms of univariate innovations
of the X and Y processes; such a statement contrasts markedly with the
previous results, which all stress bivariate characteristics. This
result states that Y does not cause X precisely when past innovations of
Y are all orthogonal to current, and, by stationarity, all future X
innovations. 'The relation of this result to the unpublished work of
others is commented upon.

Proposition 4 is in the nature of a meta—-thecrem; it asserts
that, when the definitions are altered sco as to effect a time reversal
{we backcast the present from the future) all existing theorems have
natural analogues. A sample proof is provided for the reversed version

of Sims' Thecrem 1. What is not symmetric, however, is the property of
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exogeneity itself; specifically, Proposition 5 shows that, only in the
special case where the regression of Y on current, past, and future X
has all coefficients, except possibly contemporaneous X, vanishing will
X be exogenous according to both definitions.
The last result, Proposition 7, coufronts the criticism that
bivariate findings are statistical artifacts which, when found, are
likely to represent specification bias. By adding a third variable and
analyzing the trivariate system ¥ , two lessons are learned: (i) The
exogeneity of X in the bivariate iystem (?) will, if found, almost
surely reflect trivariate causality; and (ii) The exogeneity of X in the
trivariate system will be preserved in the bivariate system if and cnly
if: (a) Z doesn't cause X either, or (b) neither Z nor Y cause the
other, instantaneously or over time. (These conditions are individually suf-
ficient and jointly necessary.) When these additional interactions cannot be
ruled out, true exogeneity of X, as referred to the trivariate system, is
blurred by the omitted series Z when perceived in the bivariate system.
Despite the fact that Proposition 3 puts the characterization
of the exogeneity of X in terms of its own and Y's own innovations on
the same theoretical (Hilbert space) underpinning as the Sims and Granger
results, it is cursed result. As several writers have noted ([25] is
most forceful), the natural estimation procedure which it suggests does
not have the asymptotic validity of the other two tests. Whether this
preblem is amenable te correction by some fancy footwork with distribution

theory (thereby validating the procedure used in [5], [9], and [15], to

name just three adherents of the "prewhitening school') or whether the

difficulty is more deepseated remains an issue on which present opinion
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is divided. Should the latter view win out, it would shed some needed
light on the cause of the innovations approach's sampling shortcomings.
At the theoretical (population) level, it may be too early to
assert with any confidence that all of the interesting characterizations
of exogeneity have been discovered. Even for bivariate systems, certain
natural variational conjectures come to mind; and the issue of the

relation, if any, of H (-=) to H () remains open. An elegant proof

XY XY
of the result in Remark 2 in Section VI will doubtless be forthcoming.
Also, the specific question posed relating Y+* X in the bivariate and
trivariate systems was only one of many that could be considered.
Others, involving the passage of the notions of instantaneous causality
from the trivariate to the bivariate system, come immediately to mind.

Finally, additional contributions which clarify, or, otherwise

pronounce upon, any reconciliation of statistical causality with

"intervention-based'" notions of causality would be gratefully received.
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Footnotes

1/

~'The symbol = will frequently be used to indicate that the
object on the left-hand side is being defined.

Z-/These abbreviations (here, w.s.s.p.) which follow technical
definitions will often be used to retain precision and economize on
space in the sequel.

3/ . -y

~'When the range of Zl and 22 is complex, it is necessary to

take the complex conjugate of 22, as the notation indicates. Even

though we deal with real processes, their representation in the frequency
domain requires this treatment. Since there is essentially no use

of the frequency domain in this paper, we will hereafter suppress the
conjugation notation.

-i/Because its usage is not uniform, we emphasize that all
subspaces for us will be closed (equivalently complete, because a Hilbert
space is a complete metric space; [13], p. 116 proves this equivalence).

5/

='The set S may be taken as a mnemonic for the span of the
elements in the parentheses, or the linear manifold generated by them.
Its closure may also be shown to be the intersection of all subspaces
containing the generators.

QITO define orthogonal projection, several related concepts
are needed. The first is finite direct sum:

X=M1+M2+...+Mn=iZlMi

means that any xeX may be uniquely written

where xigMi. When the subspaces Milﬁj, all i#j (any element of one

orthogonal to all elements of the other), the direct sum decomposition
is said to be orthogonal, and is indicated

n
X=M 8M, 6. ..8M = ] o.
i=1
Secondly, if H is any Hilbert space and M is any linear manifold, the
set M = {xeH:x|m, all meM} is a subspace; and if M is itself a subspace,

it follows that H = M@Mi] ([1], p. 172). Applying this last result,
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Hy y( @) = Hy (000 S (0)1L
for ZCHX,Y(-W, m),
z=u+v,u Lv, vy y(0), velty (o)1l

Now the projection operator which maps H, . (-», «») onto the subspace

Hy 4(8),

interest in the text involve z = X(t+l) and z = Y(t). This operator
enjoys many important properties: linearity, idempotency, continuity
unit norm, self-adjointness, and positivity--none of which are exploited
in this paper. That the projection minimizes the mean-square error
follows from 5.8(6) of [30].

7/

X,Y
H (t)), is defined by (z|H (t)) = u. The special cases of
s o X,Y

L=HX’Y('w, ®) > HX,Y(_W’ w) is defined by L[X(t)] = L[X(t+l)]

and L[Y(t)] = Y(t+1), all t, and extended by continuity ([16], p. 14, 15).
L is useful not only in proving plausible implications of stationarity,
but also in deriving spectral properties of the process, which flow from
the spectral properties of a unitary family of operators (cf. Stone's

Theorem in [16], Section 137). {Lt}, tel is such a family, when
is defined as the composition of L with itself t times.

§/The notation is so natural that it should cause no confusion,
although strictly speaking we should write

(0 (®) | B y(e -1 x By o(c - 1)

and proceed to extend all concepts to product spaces like these. Such
extensions are helpful where extensive proofs are involved, as the Wiener-
Masani [30] article deomonstrates. Of course, by saying that a vector
(:) (t) is J_to a subspace, we mean that each component of the vector is
orthogonal to all elements of the subspace.

EjThis definition and the assertion of the multidimensional
Wold decomposition theorem appears due to Zasuhin [33] who announced the
result without proof ([30], p. 136). The first proof of the full rank
case is Doob's ([2], p. 597); the general rank case was treated by
Wiener and Masani [30]. Another definition of the rank of a process as
the a.e. (Lebesgue) rank of its spectral density function ([17], p. 39)
is present in the literature but needn't concern us in this paper.

lg,The testable restrictions which must be in the data for
this treatment not to be rejected are quite--perhaps too--severe. For
example, X(t) must be perfectly predictable from (current) Y(t) and the
joint past. Of course, the finite length of real world data series
compromises any strict test, but in principle the same objection applies
to all theory.
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;lehese claims may be made good by use of the uniqueness of

the orthogonal complement and 6.10(a) and 5.11(b) of [30].

~Lg/This is 6.10(b) of [30].
L3/¢ 13(b) of [30].
14/

—' It might be argued that in most applications there is no
perfectly predictable component in the original series, again leaving us
with a linearly regular process to analyze.

15/ s=0

Yy '6(s), where §(s) = {é s£0

[

In this case, . v(s)
]

is the convolution identity (A * § = § * A = A for all sequences A(.)).
* * A = A % % A' = % Al
Thus, A - A' (k) A Z. % A'(k) Az A' (k).
=]
lé/Thus, one sees expressions like X(t) = z a(j)e(t—j) where
o j=0
z |a(j)! < ® jis imposed, and vague, unmotivated references to "invertibility"
j=0
made. First, no covariance stationary process with a discontinuous
spectrum can be so represented, so the first assumption is overly strong.
Second, no "invertibility,'" even with a finite order m.a.r., is necessary
for Hx(t) = He(t), although if the process were 'invertible," the desired

result would follow immediately from stationarity considerations.

17/ ; s 3 .
—'The author is not aware of necessary and sufficient conditions
for a process to have an a.r. A very natural condition on the spectral
density matrix, that there exist 0 < Cp <€y < such that clI < F'()) < CZI

where F'()\) is the spectral density matrix of the (?) process, has been

used in [17], [30], [27] to arrive at an a.r. This condition is not,
however, necessary for an a.r. Like the outright assumption of existence
of an a.r., it is in the nature of a regularity condition which, depend-
ing on one's axiomatic point of view, may be preferable.

The fact is, moreover, that this boundedness condition on
the spectral density also guarantees that the process has an e.a.r.,
and more: the set {X(t), Y(t), teI} forms a "basis" for Hy (== =
so that all elements in HX Y(—m, ©), not just projections, may be
3
expressed as convergent infinite linear combinations.

l§'/'I'he result referred to in the text reads: for any real square
matrix A there exists a real, orthogonal P such that PA = T, where T is
upper (real) triangular, with diagonal elements nonnegative. The desired
application follows, upon transposition, for the II-L normalization; an
analogous theorem for T lower triangular could be proved (by induction)
and transposition would again give the II-U normalization; uniqueness
is immediate.

l~94-/'I'l:1is fact is the crux of the statement that a Wold causal-
chain simulataneous equations model is exactly identified by its require-
ment of lower triangularity (which embodies the direction of causality




w G =

in the chain) and diagonal covariance matrix. The situation must be
carefully distinguished from a lower triangular Wold decomposition in a
time series, which, if imposed, would be a vastly overidentifying restriction.

2
ag
20/g400e 02 = 6% — 2 and recalling the definition of (),
v W 02 v
u

we have

(£) = 4% 2q¢%) (v)
F

In the terminology of p.15. We may verify directly that the proposed

candidate for ZI/ZQ works and that (E) has covariance matrix the identity.
f
gljlhis follows by standard manipulation of the inner product.
X(t) - (X(t)|Nl) l_Nl by the characterization of (X(t)|N1). But

(X(£) [N)) is in N, so that <X(t), (X(£)|N))> - <x(B) [N, &()[N)> =0,
and the first term is zero since X(t) l_ﬁz by assumption. This
Teaves ||(x(t)|ﬁ'1‘)||2 = 0, so that (X(t)|N)) = 0.

22/

— Actually, Sims modestly proves a little more than he
states. He proves the "only if" part, that Y(t) = h*X(t)+W(t) =>Y

; . X .
does not cause X, without the assumption that (Y) has an autoregressive

representation. This, of course, is what our Corollary 2 gave. So,
we only have a strengthening in the "if" direction, if this change
in Sims' statement of Theorem 2 is made.

23/ ; y ‘

—'The author wishes to acknowledge his gratitude to
Christopher A. Sims not only for suggesting the pursuit of this
projection, but more generally for stressing the fundamentalness of
fundamentalness, His oral tradition is reflected in the references
to the work of Rozanov found in these pages.

i
24 &
——/More explicitly, X +£ Z <=> 012023 ~ 013022 # 0 <=> 013 ~

L.t 0<> 0
012922 ™23 5.8
only when1012623 =0 WllliUXZ.Y and Ul3 nec?ssarlly agree; in other

i i

1
words, X +* Z whenever X +§ Z 1ff either X +§-Y or Y +§ Z. Viewed as

# 0, and X e - 7 <=y 014 # 0. Consequently,

|
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i
subsets of the space E positive definite matrices, the events X <+ Z

i
and X i & Z both have lebesgue measure, m(.), zero, so that trivially
their complements agree almost everywhere, as asserted. We do not
pursue these and related issues here, because our chief concern is with
causality flows over time.

2 . . , .
—éfThe word is chosen to connote technical senses in which

this concept might be made more precise.
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